Roles of Naturally Occurring Protease Inhibitors in the Modulation of Host Cell Signaling and Cellular Invasion by Trypanosoma cruzi

Part of the Subcellular Biochemistry book series (SCBI, volume 47)


Trypanosoma cruzi trypomastigotes rely on the structural diversity of the cruzipain family of cysteine proteases to infect and multiply in nonprofessional phagocytic cells. Herein, we will review studies demonstrating that the interplay of cruzipain with peptidase inhibitors modulate infection outcome in a variety of experimental settings. Studies with a panel of T. cruzi strains showed that parasite ability to invade human smooth muscle cells is influenced by the balance between cruzipain and chagasin, a tight binding endogenous inhibitor of papain-like cysteine proteases. Analysis of T. cruzi interaction with endothelial cells and cardiomyocytes indicated that parasite-induced activation of bradykinin receptors drive host cell invasion by [Ca2+]I-dependent pathways. Clues about the mechanisms underlying kinin generation in vivo by trypomastigotes came from analysis of the dynamics of edematogenic inflammation. Owing to plasma extravasation, the blood-borne kininogens accumulate in peripheral sites of infection. Upon diffusion in peripheral tissues, kininogens (i.e., type III cystatins) bind to heparan sulphate chains, thus constraining interactions of the cystatin-like inhibitory domains with cruzipain. The cell bound kininogens are then turned into facile substrates for cruzipain, which liberates kinins in peripheral tissues. Subjected to tight-regulation by kinin-degrading metallopeptidases, such as angiotensin converting enzyme, the short-lived kinin peptides play a dual role in the host-parasite balance. Rather than unilaterally stimulating pathogen infectivity via bradykinin receptors, the released kinins potendy induce dendritic cell maturation, thus stimulating type 1 immune responses. In conclusion, the studies reviewed herein illustrate how regulation of parasite proteases may affect host-parasite equilibrium in the course of T. cruzi infection.


Connective Tissue Growth Factor Trypanosoma Cruzi Cellular Invasion Kinin Receptor Heparan Sulphate Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burleigh BA, Woosley AM. Cell signaling and Trypanosoma cruzi invasion. Cell Microbiol 2002; 4:701–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Moreno SN, Silva J, Vercesi AE et al. Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion. J Exp Med 1994; 180(4):1535–40.PubMedCrossRefGoogle Scholar
  3. 3.
    Dorta ML, Ferreira AT, Oshiro ME et al. Ca2+ signal induced by Trypanosoma cruzi metacydic trypomastigote surface molecules implicated in mammalian cell invasion. Mol Biochem Parasitol 1995; 73(1–2):285–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Tardieux I, Webster P, Ravesloot J et al. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 1992; 71(7):1117–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Leite MF, Moyer MS, Andrews NW. Expression of the mammalian calcium signaling response to Trypanosoma cruzi in Xenopus laevis oocytes. Mol Biochem Parasitol 1998; 92:1–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Caler EV, Chakrabarti S, Fowler KT et al. The exocytosis-regulatory protein synaptotagmin VII mediates cell invasion by Trypanosoma cruzi. J Exp Med 2001; 193:1097–04.PubMedCrossRefGoogle Scholar
  7. 7.
    Woolsey AM, Sunwoo L, Petersen CA et al. Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation. J Cell Sci 2003; 116:3111–22.CrossRefGoogle Scholar
  8. 8.
    Woolsey AM, Burleigh BA. Host cell actin polimerization is required for cellular retention of Trypanosoma cruzi and early association with endosomal/lysosomal compartments. Cell Microbiol 2004; 6(9):829–38.PubMedCrossRefGoogle Scholar
  9. 9.
    Piras MM, Piras R, Henriquez D et al. Changes in morphology and infectivity of cell culture-derived trypomastigotes of Trypanosoma cruzi. Mol Biochem Parasitol 1982; 6(2):67–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Santana JM, Grellier P, Schrével J et al. A Trypanosoma cruzi-secreted 80 kDa proteinase with specificity for human collagen types I and IV. Biochem J 1997; 324:129–37.Google Scholar
  11. 11.
    Grellier P, Vendeville S, Joyeau R et al. Trypanosoma cruzi prolyl-oligopeptidase Tc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes. J Biol Chem 2001; 276:47078–86.PubMedCrossRefGoogle Scholar
  12. 12.
    Giordano R, Fouts DL, Tewari D et al. Cloning of a surface membrane glycoprotein specific for the infective form of Trypanosoma cruzi having adhesive properties to laminin. J Biol Chem 1999; 274:3461–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Magdesian MH, Giordano R, Ulrich H et al. Infection by Trypanosoma cruzi. Identification of a parasite ligand and its host cell receptor. J Biol Chem 2001; 276:19382–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Burleigh BA, Andrews NW. A 120-kDa alkaline peptidase from Trypanosoma cruzi is involved in the generation of a novel Ca2+-signaling factor for mammalian cells. J Biol Chem 1995; 270(10):5172–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Burleigh BA, Caler EV, Webster P et al. A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signalling in mammalian cells. J Cell Biol 1997; 136(3):609–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Caler EV, Vaena de Avalos S, Haynes PA et al. Oligopeptidase B-dependent signalling mediates host cell invasion by Trypanosoma cruzi. EMBO J 1998; 17:4975–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Meirelles MN, Juliano L, Carmona E et al. Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol Biochem Parasitol 1992; 52(2):175–84.PubMedCrossRefGoogle Scholar
  18. 18.
    Scharfstein J, Schmitz V, Morandi V et al. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. J Exp Med 2000; 192(9):1289–300.PubMedCrossRefGoogle Scholar
  19. 19.
    Todorov AG, Andrade D, Pesquero JB et al. Trypanosoma cruzi induces edematogenic responses in mice and invades cardiomyocytes and endothelial cells in vitro by activating distinct kinin receptor (B1/B2) subtypes. FASEB J 2003; 17:73–5.PubMedGoogle Scholar
  20. 20.
    Aparicio IM, Scharfstein J, Lima APCA. A new cruzipain-dependent pathway of human cell invasion by Trypanosoma cruzi requiring trypomastigote membranes. Infec and Immun 2004; 72:5892–02.CrossRefGoogle Scholar
  21. 21.
    Cazzulo JJ, Cazzulo Franke MC, Martinez J et al. Some kinetic properties of a cysteine proteinase (cruzipain) from Trypanosoma cruzi. Biochim Biophys Acta 1990; 1037(2):186–91.PubMedGoogle Scholar
  22. 22.
    Scharfstein J, Schechter M, Senna M et al. Trypanosoma cruzi: Characterization and isolation of a 57/51,000 m.w. surface glycoprotein (GP57/51) expressed by epimastigotes and bloodstream trypomastigotes. J Immunol 1986; 137(4):1336–41.PubMedGoogle Scholar
  23. 23.
    Cazzulo JJ, Couso R, Raimondi A et al. Further characterization and partial amino acid sequence of a cysteine proteinase from Trypanosoma cruzi. Mol Biochem Parasitol 1989; 33(1):33–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Murta AC, Persechini PM, Padron TD et al. Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol 1990; 43(1):27–38.PubMedCrossRefGoogle Scholar
  25. 25.
    Eakin AE, Mills AA, Harth G et al. The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J Biol Chem 1992; 267(11):7411–20.PubMedGoogle Scholar
  26. 26.
    Cazzulo JJ. Proteinases of Trypanosoma cruzi: Potential targets for the chemotherapy of Chagas disease. Curr Top Med Chem 2002; 2:1261–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Nobrega OT, Santos Silva MA, Teixeira AR et al. Cloning and sequencing of tccb, a gene encoding a Trypanosoma cruzi cathepsin B-like protease. Mol Biochem Parasitol 1998; 97(1–2):235–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Campetella O, Henriksson J, Aslund L et al. The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is encoded by multiple polymorphic tandemly organized genes located on different chromosomes. Mol Biochem Parasitol 1992; 50(2):225–34.PubMedCrossRefGoogle Scholar
  29. 29.
    Lima AP, Tessier DC, Thomas DY et al. Identification of new cysteine protease gene isoforms in Trypanosoma cruzi. Mol Biochem Parasitol 1994; 67(2):333–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Aslund L, Henriksson J, Campetella O et al. The C-terminal extension of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi. Mol Biochem Parasitol 1991; 45(2):345–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Scharfstein J, Rodrigues MM, Alves CA et al. Trypanosoma cruzi: Description of a highly purified surface antigen defined by human antibodies. J Immunol 1983; 131(2):972–6.PubMedGoogle Scholar
  32. 32.
    Hellman U, Wernstedt C, Cazzulo JJ. Self-proteolysis of the cysteine proteinase, cruzipain, from Trypanosoma cruzi gives a major fragment corresponding to its carboxy-terminal domain. Mol Biochem Parasitol 1991; 44(1):15–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Lima AP, Scharfstein J, Storer AC et al. Temperature-dependent substrate inhibition of the cysteine proteinase (GP57/51) from Trypanosoma cruzi. Mol Biochem Parasitol 1992; 56(2):335–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Nery ED, Juliano MA, Meldal M et al. Characterization of the substrate specificity of the major cysteine protease (cruzipain) from Trypanosoma cruzi using a portion-mixing combinatorial library and fluorogenic peptides. Biochem J 1997; 323(2):427–33.PubMedGoogle Scholar
  35. 35.
    Serveau C, Lalmanach G, Juliano MA et al. Investigation of the substrate specificity of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, through the use of cystatin-derived substrates and inhibitors. Biochem J 1996; 313(3):951–6.PubMedGoogle Scholar
  36. 36.
    Judice WAS, Cezari MHS, Lima APCA et al. Comparison of the specificity, stability and individual rate constants with respective activation parameters for the peptidase activity of cruzipain and its recombinant form, cruzain, from Trypanosoma cruzi. Eur J Biochem 2001; 268:6578–86.PubMedCrossRefGoogle Scholar
  37. 37.
    McGrath ME, Eakin AE, Engel JC et al. The crystal structure of cruzain: A therapeutic target for Chagas’ disease. J Mol Biol 1995; 247(2):251–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Gillmor SR, Craik CS, Fletterick RJ. Structural determinants of specificity in the cysteine protease cruzain. Prot Sci 1997; 6:1603–11.CrossRefGoogle Scholar
  39. 39.
    Stoka V, McKerrow JH, Cazzulo JJ et al. Substrate inhibition of cruzipain is not affected by the C-terminal domain. FEBS Lett 1998; 429:129–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Salvati L, Mattu M, Polticelli F et al. Modulation of the catalytic activity of cruzipain, the major cysteine proteinase from Trypanosoma cruzi, by temperature and pH. Eur J of Biochem 2001; 268(11):3253–58.CrossRefGoogle Scholar
  41. 41.
    Tomas AM, Kelly JM. Stage-regulated expression of cruzipain, the major cysteine protease of Trypanosoma cruzi is independent of the level of RNA. Eur J Biochem 1996; 76(1–2):91–103.Google Scholar
  42. 42.
    El Sayed NM, Myler PJ, Bartholomeu DC et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005; 309:409–15.PubMedCrossRefGoogle Scholar
  43. 43.
    Lima APCA, Reis FCG, Serveau C et al. Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. Mol Biochem Parasitol 2001; 114(1):41–52.PubMedCrossRefGoogle Scholar
  44. 43b.
    dos Reis FC, Judice WA, Juliano MA et al. The substrate specificity of cruzipain 2, a cysteine protease isoform from Trypanosoma cruzi. FEMS Microbiol Lett 2006; 259(2):215–20.PubMedCrossRefGoogle Scholar
  45. 44.
    Engel JC, Doyle PS, Hsieh I et al. Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 1998; 188(4):725–34.PubMedCrossRefGoogle Scholar
  46. 45.
    Scharfstein J, Mendonça-Previato L, Borojevic R. Human antibody response to a surface glycopro-tein isolated from Trypanosoma cruzi. Proc Pontificia Academia Scientiarvm 1982; 51:150–4.Google Scholar
  47. 46.
    Goncalves MF, Umezawa ES, Katzin AM et al. Trypanosoma cruzi: Shedding of surface antigens as membrane vesicles. Exp Parasitol 1991; 72(1):43–53.PubMedCrossRefGoogle Scholar
  48. 47.
    Monteiro ACS, Abrahamson M, Lima APCA et al. Identification, characterization and localization of chagasin, a tight-binding cysteine proteinase inhibitor in Trypanosoma cruzi. J Cell Sci 2001; 114(21):3933–42.PubMedGoogle Scholar
  49. 48.
    Rigden DJ, Mosolov W, Galperin MY. Sequence conservation in the chagasin family suggests a common trend in cysteine proteinase binding by unrelated protein inhibitors. Protein Sci 2002; 11:1971–77.PubMedCrossRefGoogle Scholar
  50. 49.
    Sanderson SJ, Westrop GD, Scharfstein J et al. Functional conservation of a natural cysteine peptidase inhibitor in protozoan and bacterial pathogens. FEBS Lett 2003; 542:12–6.PubMedCrossRefGoogle Scholar
  51. 50.
    Riekenberg S, Witjes B, Saric M et al. Identification of EhICP1, a chagasin-like cysteine protease inhibitor of Entamoeba histolytica. FEBS Lett 2005; 579:1573–8.PubMedCrossRefGoogle Scholar
  52. 50b.
    Pandey KC, Singh N, Arastu-Kapur S et al. Falstatin, a cysteine protese inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog 2006; 2(11):e117.PubMedCrossRefGoogle Scholar
  53. 51.
    Rigden DJ, Monteiro ACS, De Sá MFG. The protease inhibitor chagasin of Trypanosoma cruzi adopts an immunoglobulin-type fold and may have arisen by horizontal gene transfer. FEBS Lett 2001; 504:41–4.PubMedCrossRefGoogle Scholar
  54. 52.
    Salmon D, Aido-Machado R, Diehl A et al. Solution structure and backbone dynamics of the Trypanosoma cruzi cysteine protease inhibitor chagasin. J Mol Biol 2006; 357:1511–1521.PubMedCrossRefGoogle Scholar
  55. 52b.
    Figueiredo da Silva AA, Carvalho Vieira LD, Krieger MA et al. Crystal structure of chagasin, the endogenous c ysteine-protease inhibitor from Trypanosoma cruzi. J Struct Biol 2006, in press.Google Scholar
  56. 53.
    Smith BO, Picken NC, Westrop GD et al. The structure of Leishmania mexicana ICP provides evidence for convergent evolution of cysteine peptidase inhibitors. J Biol Chem 2006; 281:5821–5828.PubMedCrossRefGoogle Scholar
  57. 54.
    Santos CC, Santanna C, Terres A et al. Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mamalian cells. J Cell Sci 2005; 118:901–15.PubMedCrossRefGoogle Scholar
  58. 55.
    Brooks DR, Tetley L, Coombs GH et al. Processing and trafficking of cysteine proteases in Leishmania mexicana. J Cell Sci 2000; 113:4035–41.PubMedGoogle Scholar
  59. 56.
    Del Nery E, Juliano MA, Lima AP et al. Kininogenase activity by the major cysteinyl proteinase (cruzipain) from Trypanosoma cruzi. J Biol Chem 1997; 272:25713–18.PubMedCrossRefGoogle Scholar
  60. 57.
    Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: Kallikreins, kininogens, and kininases. Pharmacol Rev 1992; 44:1–80.PubMedGoogle Scholar
  61. 58.
    Kozik A, Moore RB, Potempa J et al. A novel mechanism for bradykinin production at inflammatory sites. Diverse effects of a mixture of neutrophil elastase and mast cell tryptase versus tissue and plasma kallikreins on native and oxidized kininogens. J Biol Chem 1998; 273:33224–33229.PubMedCrossRefGoogle Scholar
  62. 59.
    Svensjö E, Batista PR, Brodskyn CI et al. Interplay between parasite cysteine proteases and the host kinin system modulates microvascular leakage and macrophage infection by promastigotes of the Leishmania donovani complex. Microbes Infect 2006; 8(1):206–20.PubMedCrossRefGoogle Scholar
  63. 60.
    Farmer SG, Burch RM. Biochemical and molecular pharmacology of kinin receptors. Annu Rev Pharmacol Toxicol 1992; 32:511–536.PubMedCrossRefGoogle Scholar
  64. 61.
    Blaukat A. Structure and signalling pathways of kinin receptors. Andrologia 2003; 35:17–23.PubMedCrossRefGoogle Scholar
  65. 62.
    Marceau F, Bachvarov DR. Kinin receptors. Clin Rev Allergy Immunol 1998; 6:385–401.CrossRefGoogle Scholar
  66. 63.
    Blaukat A, Micke P, Kalatskaya I et al. Downregulation of bradykinin B2 receptor in human fibroblasts during prolonged agonist exposure. Am J Physiol Heart Circ Physiol 2003; 284:H1909–16.PubMedGoogle Scholar
  67. 64.
    Ricupero DA, Romero JR, Rishikof DC et al. Des-Arg(10)-kallidin engagement of the B1 receptor stimulates type I collagen synthesis via stabilization of connective tissue growth factor mRNA. J Biol Chem 2000; 275(17):12475–80.PubMedCrossRefGoogle Scholar
  68. 65.
    Aliberti J, Viola JP, Vieira-de-Abreu A et al. Cutting edge: Bradykinin induces IL-12 production by dendritic cells: A danger signal that drives Th1 polarization. J Immunol 2003; 170:5349–53.PubMedGoogle Scholar
  69. 66.
    Xie P, Browning D, Hay N et al. Activation of NFk-B by bradykinin through a Gaq-and Gbg-dependent pathway that involves phosphoinositide 3-kinase and Akt. J Biol Chem 2000; 275:24907–14.PubMedCrossRefGoogle Scholar
  70. 67.
    Stoka V, Nycander M, Lenarcic B et al. Inhibition of cruzipain, the major cysteine proteinase of the protozoan parasite, Trypanosoma cruzi, by proteinase inhibitors of the cystatin superfamily. FEBS Lett 1995; 370:101–4.PubMedCrossRefGoogle Scholar
  71. 68.
    Kaufmann J, Haasemann M, Modrow S et al. Structural dissection of the multidomain kininogens. Fine mapping of the target epitopes of antibodies interfering with their functional properties. J Biol Chem 1993; 268:9079–91.PubMedGoogle Scholar
  72. 69.
    Herwald H, Hasan AAK, Godovac-Zimmermann J et al. Identification of an endothelial cell binding site on kininogens’ domain. J Biol Chem 1995; 270:14634–42.PubMedGoogle Scholar
  73. 70.
    Renné T, Dedio J, David G et al. H-Kininogen utilizes heparan sulfate proteoglycans for accumulation on Endothelial Cells. J Biol Chem 2000; 275:33688.PubMedCrossRefGoogle Scholar
  74. 71.
    Renne T, Muller-Esterl W. Cell surface-associated chondroitin sulfate proteoglycans bind contact phase factor H-kininogen. FEBS Lett 2001; 500(1–2):36–40.PubMedCrossRefGoogle Scholar
  75. 72.
    Lima APCA, Almeida IL, Tersariol I et al. Heparan sulfate modulates kinin release by Trypanosoma cruzi through the activity of cruzipain. J Biol Chem 2002; 277:5875–81.PubMedCrossRefGoogle Scholar
  76. 72b.
    Barboza M, Duschak VG, Fukuyama Y et al. Structural analysis of the N-glycans of the major cysteine proteinase of Trypanosoma cruzi. Identification of sulfated high-mannose type oligosaccharides. FEBS J 2005; 272(15):3803–15.PubMedCrossRefGoogle Scholar
  77. 73.
    de Souza W. Structural organization of the cell surface of pathogenic protozoa. Micron 1995; 26:405–30.PubMedCrossRefGoogle Scholar
  78. 74.
    Ming M, Ewen ME, Pereira ME. Trypanosome invasion of mammalian cells requires activation of the TGF beta signaling pathway. Cell 1995; 82(2):287–96.PubMedCrossRefGoogle Scholar
  79. 75.
    Waghabi MC, Keramidas M, Feige JJ et al. Activation of transforming growth factor beta by Trypanosoma cruzi. Cell Microbiol 2005; 7(4):511–7.PubMedCrossRefGoogle Scholar
  80. 75b.
    Monteiro ACS, Schmitz V, Svensjo E et al. Cooperative activation of TLR2 and Bradykinin B2 receptor is required for induction of type-1 immunity in mouse model of subcutaneous infection by Trypanosoma cruzi. J Immunol 2006; 177(9):6325–35.PubMedGoogle Scholar
  81. 76.
    Campos MA, Almeida IC, Takeuchi O et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 2001; 167:416–423.PubMedGoogle Scholar
  82. 76b.
    Cuevas IC, Cazzulo JJ, Sanchez DO. gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infect Immun 2003; 71(10):5739–49.PubMedCrossRefGoogle Scholar
  83. 77.
    McLean P, Ahluvalia A, Perretti A. Association between kinin B1 receptor expression and leukocyte trafficking across mesenteric postcapillary venules. J Exp Med 2001; 192:367–80.CrossRefGoogle Scholar
  84. 78.
    Petersen CA, Krumholz KA, Burleigh BA. Toll-like receptor 2 regulates interleukin-1beta-dependent cardiomyocyte hypertrophy triggered by Trypanosoma cruzi. Infect Immun 2005; 73(10):6974–80.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Instituto de Biofisica Carlos Chagas FilhoUFRJRio de JaneiroBrazil

Personalised recommendations