Advertisement

Convolutional, Turbo, and Turbo-Like Codes for Digital Multimedia Broadcasting: Theory and Applications

  • Fred Daneshgaran
  • Massimiliano Laddomada
  • Marina Mondin

12.1 Chapter Summary

The theory of channel coding is a well-established technical subject dating back to the seminal work by Shannon, who paved the way to what is nowadays recognized as Information Theory. It embraces both theory and a variety of practical applications in Digital Multimedia Broadcasting.

In this chapter we provide a review of the basic theory and results in this subject, with the emphasis on those channel coding architectures that deal with convolutional codes as well as low-density parity-check codes. The rest of the chapter is organized as follows. In Sect. 12.1.1 we briefly present the Shannon's view of a typical digital communication system, while in Sect. 12.1.2 we discuss the basic channel models employed as benchmarks for system performance evaluation. The theory of convolutional codes is presented in Sect. 12.2. In Sect. 12.2.1 we focus on a variety of alternative techniques for representing convolutional encoders. In Sect. 12.2.2the focus is on the transfer...

Keywords

LDPC Code Turbo Code Convolutional Code Frame Error Rate Additive White Gaussian Noise Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal, 27:379–423MATHMathSciNetGoogle Scholar
  2. 2.
    Cover TM, Thomas JA (1991) Elements of Information Theory, Wiley, 1st ed. New York, NYMATHCrossRefGoogle Scholar
  3. 3.
    Papoulis A, Pillai SU (2002) Probability, Random Variables and Stochastic Processes. Mc-Graw Hill, New York, NYGoogle Scholar
  4. 4.
    Proakis JG (2001) Digital Communications, 4th ed. McGraw Hill, New York, NYGoogle Scholar
  5. 5.
    Lin S, Costello DJ (2004) Error Control Coding, Prentice Hall, 2nd ed. Upper Saddle river, NJGoogle Scholar
  6. 6.
    Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269MATHCrossRefGoogle Scholar
  7. 7.
    Viterbi A (1971) Convolutional codes and their performance in communication systems. IEEE Transactions on Communications, 19(5):751–772CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bahl L, Cocke J, Jelinek F, Raviv J (1974) Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory, 20(2):284–287MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Sklar B (1997) A primer on turbo code concepts. IEEE Communications Magazine, 35(12):94–102CrossRefGoogle Scholar
  10. 10.
    Hagenauer J, Offer E, Papke L (1996) Iterative decoding of binary block and convolutional codes. IEEE Transactions on Information Theory, 42(2):429–445MATHCrossRefGoogle Scholar
  11. 11.
    Forney Jr. GD (1970) Convolutional codes I: Algebraic structure. IEEE Transactions on Information Theory, 16(6):720–738MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cain JB, Clark G, Geist JM (1979) Punctured convolutional codes of rate \(\frac{{n - 1}}{n}\) and simplified maximum likelihood decoding. IEEE Transactions on Communications, 25(1):97–100MathSciNetGoogle Scholar
  13. 13.
    Hagenauer J (1988) Rate-compatible punctured convolutional codes (RCPC codes) and their applications. IEEE Transactions on Communications, 36(4):389–400CrossRefGoogle Scholar
  14. 14.
    Shen B, Patapoutian A, McEwen PA (2001) Punctured recursive convolutional encoders and their applications in turbo-codes. IEEE Transactions on Information Theory, 47(6):2300– 2320MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Benedetto S, Divsalar D, Montorsi G, Pollara F (1998) Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding. IEEE Transaction on Information Theory, 44(3):909–926CrossRefMathSciNetGoogle Scholar
  16. 16.
    Benedetto S, Montorsi G (1996) Design of parallel concatenated convolutional codes. IEEE Transactions on Communications, 44(5):591–600MATHCrossRefGoogle Scholar
  17. 17.
    Daut DG, Modestino JW, Wismer LD (1982) New short constraint length convolutional code constructions for selected rational rates. IEEE Transaction on Information Theory, 28(5): 794–800MATHCrossRefGoogle Scholar
  18. 18.
    Kim M (1997) On systematic punctured convolutional codes. IEEE Transactions on Communications, 45(2):133–139CrossRefGoogle Scholar
  19. 19.
    Yasuda Y, Kashiki K, Hirata Y (1984) High-rate punctured convolutional codes for soft decision viterbi decoding. IEEE Transactions on Communications, 32(3):315–319CrossRefGoogle Scholar
  20. 20.
    Haccoun D, Begin G (1989) High-rate punctured convolutional codes for Viterbi and sequential decoding. IEEE Transactions on Communications, 37(11):1113–1125CrossRefMathSciNetGoogle Scholar
  21. 21.
    Begin G, Haccoun D (1989) High-rate punctured convolutional codes: Structure properties and construction technique. IEEE Transactions on Communications, 37(12):1381–1385CrossRefMathSciNetGoogle Scholar
  22. 22.
    Begin G, Haccoun D, Paquin C (1990) Further results on high-rate punctured convolutional codes for Viterbi and sequential decoding. IEEE Transactions on Communications, 38(11):1922–1928CrossRefGoogle Scholar
  23. 23.
    Hole KJ (1988) New short constraint length rate \(\frac{{N - 1}}{N}\) punctured convolutional codes for soft-decision Viterbi decoding. IEEE Transactions on Information Theory, 34(5):1079–1081CrossRefGoogle Scholar
  24. 24.
    Lee PJ (1985) New short constraint length, rate 1/N convolutional codes which minimize the required SNR for given desired bit error rates. IEEE Transactions on Communications, 33(2):171–177CrossRefGoogle Scholar
  25. 25.
    Lee PJ (1986) Further results on rate 1/N convolutional code constructions with minimum required SNR criterion. IEEE Transactions on Communications, 34(4):395–399Google Scholar
  26. 26.
    Lee PJ (1988) Constructions of rate \(\frac{{n - 1}}{n}\) punctured convolutional codes with minimum required SNR criterion. IEEE Transactions on Communications, 36(10):1171–1174CrossRefGoogle Scholar
  27. 27.
    Chang J, Hwang D, Lin M (1997) Some extended results on the search for good convolutional codes. IEEE Transactions on Information Theory, 43(5):1682–1697MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: Turbo-codes. Proc. 1993 IEEE Int. Conf. on Comm., Geneva, Switzerland, 1064–1070Google Scholar
  29. 29.
    Gallager RG (1962) Low-density parity-check codes. IRE Transactions on Information Theory, 8(1):21–28CrossRefMathSciNetGoogle Scholar
  30. 30.
    Mackay DJC (1999) Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory, 45(2):399–431MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Benedetto S, Montorsi G (1996) Unveiling turbo codes: Some results on parallel concatenated coding schemes. IEEE Transactions on Information Theory, 42(2):409–428MATHCrossRefGoogle Scholar
  32. 32.
    Divsalar D, Pollara F (1995) Turbo codes for PCS applications. Proc. 1995 IEEE Int. Conf. on Comm., Seattle, WA, 54–59Google Scholar
  33. 33.
    Garello R, Pierleoni P, Benedetto S (2001) Computing the free distance of turbo codes and serially concatenated codes with interleavers: Algorithms and applications. IEEE Journal on Selected Areas in Communications, 19(5):800–812CrossRefGoogle Scholar
  34. 34.
    Divsalar D, Pollara F (1995) On the design of turbo codes. JPL TDA Progress Report 42–123Google Scholar
  35. 35.
    Kousa MA, Mugaibel AH (2002) Puncturing effects on turbo-codes. IEE Proceedings of Communications, 149(3):132–138CrossRefGoogle Scholar
  36. 36.
    Daneshgaran F, Laddomada M, Mondin M (2004) An extensive search for good punctured rate k/k+1 recursive convolutional codes for serially concatenated convolutional codes. IEEE Transactions on Information Theory, 50(1):208–218CrossRefMathSciNetGoogle Scholar
  37. 37.
    Daneshgaran F, Laddomada M, Mondin M (2004) High-rate recursive convolutional codes for concatenated channel codes. IEEE Transactions on Communications, 52(11):1846–1850CrossRefGoogle Scholar
  38. 38.
    Benedetto S, Garello R, Montorsi G (1998) A search for good convolutional codes to be used in the construction of turbo codes. IEEE Transactions on Communications, 46(9):1101–1105MATHCrossRefGoogle Scholar
  39. 39.
    Laddomada M, Scanavino B (2006) Some extended results on the design of punctured serially concatenated convolutional codes. JCOMSS — Journal of Communication Software and Systems, 3(2):235–244Google Scholar
  40. 40.
    Campanella M, Garbo G, Mangione S (2000) Simple method for limiting delay of optimized interleavers for turbo codes. IEE Electronics Letters, 36(14):1216–1217CrossRefGoogle Scholar
  41. 41.
    Hokfelt J, Edfors O, Maseng T (2001) A turbo code interleaver design criterion based on the performance of iterative decoding. IEEE Communication Letters, 5(2):52–54CrossRefGoogle Scholar
  42. 42.
    Garbo G, Mangione S (2001) Some results on delay constrained interleavers for turbo codes. Proc. SoftCOM 2001, Workshop on Channel Coding Techniques, 17–24Google Scholar
  43. 43.
    Dolinar S, Divsalar D (1995) Weight distribution of turbo codes using random and nonrandom permutations. JPL TDA progress report 42–122Google Scholar
  44. 44.
    Crozier S (2000) New high-spread high-distance interleavers for turbo codes. Proc. 20th Biennial Symposium on Communications, 3–7Google Scholar
  45. 45.
    Daneshgaran F, Mondin M (1999) Design of interleavers for turbo codes: Iterative interleaver growth algorithms of polynomial complexity. IEEE Transactions on Information Theory, 45(6):1845–1859MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Daneshgaran F, Mondin M (2002) Optimized turbo codes for delay constrained applications. IEEE Transaction on Information Theory, 48(1):293–305MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Nemati MA, Jamali HR, Kwon HM (2001) Interleaver and puncturing in turbo codes. Proc. VTC 2001, 149–153Google Scholar
  48. 48.
    Wang MZ, Sheikh A, Qi F (1999) Interleaver design for short turbo codes. Proc. IEEE Globecom 1999, 1b:894–898Google Scholar
  49. 49.
    Said F, Aghvami AH, Chambers WG (1999) Improving random interleaver for turbo codes. IEE Electronics Letters, 35(25):2194–2195CrossRefGoogle Scholar
  50. 50.
    Fragouli C, Wesel RD (1999) Semi-random interleaver design criteria. Proc. IEEE Globecom 1999, 5:2352–2356Google Scholar
  51. 51.
    Hokfelt J, Edfors O, Maseng T (1999) Interleaver structures for turbo codes with reduced storage memory requirement. Proc. 50th VTC 1999, 3:1585–1589Google Scholar
  52. 52.
    Herzberg H (1997) Multilevel turbo coding with a short latency. Proc. 1997 IEEE Int. Sympo. on Inform. Theory, Ulm, GermanyGoogle Scholar
  53. 53.
    Hokfelt J, Maseng T (1997) Methodical interleaver design for turbo codes. Proc. Intern. Sympos. on Turbo Codes & Related Topics, 212–215Google Scholar
  54. 54.
    Robertson P (1994) Illuminating the structure of code and decoder of parallel concatenated recursive systematic (turbo) codes. Proc. 1994 IEEE Global Commun. Conf, 1298–1303Google Scholar
  55. 55.
    Takeshita O, Costello D Jr. (1998) New classes of algebraic interleavers for turbo-codes. Proc. 1998 Int. Sympo. on Inform. Theory, MIT, Cambridge, MAGoogle Scholar
  56. 56.
    Andrews K, Heegard C, Kozen D (1998) Interleaver design methods for turbo codes. Proc. 1998 Int. Sympo. on Inform. Theory, MIT, Cambridge, MAGoogle Scholar
  57. 57.
    Crozier S, Guinand P (2001) High-performance low-memory interleaver banks for turbo-codes. Proc. IEEE 54th Vehicular Technology Conference, VTC Fall, USAGoogle Scholar
  58. 58.
    Crozier S, Guinand P (2002) Distance bounds and the design of high-distance interleavers for turbo-codes. Proc. 21st Biennial Symposium on CommunicationsGoogle Scholar
  59. 59.
    Marshall Hall Jr. (1976) The Theory of Groups. Chelsea, 2nd ed. New York, NYMATHGoogle Scholar
  60. 60.
    Meyer PA (1972) Martingales and Stochastic Integrals I. Springer, BerlinMATHGoogle Scholar
  61. 61.
    Daneshgaran F, Laddomada M (2004) Optimized prunable single-cycle interleavers for turbo codes. IEEE Transactions on Communications, 52(6):899–909CrossRefMathSciNetGoogle Scholar
  62. 62.
    Daneshgaran F, Laddomada M (2005) Reduced complexity interleaver growth algorithm for turbo codes. IEEE Transactions on Wireless Communications, 4(3):954–964CrossRefGoogle Scholar
  63. 63.
    Laddomada M, Scanavino B (2006) A cost-function based technique for design of good prunable interleavers for turbo codes. IEEE Transactions on Wireless Communications, 5(8):1953–1958CrossRefGoogle Scholar
  64. 64.
    Jinhong Y, Vucetic B, Wen Feng (1999) Combined turbo codes and interleaver design. IEEE Transactions on Communications, 47(4):484–487CrossRefGoogle Scholar
  65. 65.
    Vucetic B, Yuan J (2000) Turbo codes: Principles and applications. Kluwer, USAMATHGoogle Scholar
  66. 66.
    Berrou C, Hagenauer J, Luise M, Schlegel C, Vandendrope (2007) Special issue on turbo-information processing: Algorithms, implementations and applications. IEEE Proceedings of the IEEE, 95(6): 1146–1149CrossRefGoogle Scholar
  67. 67.
    Zhang W et al. (2007) An introduction of the Chinese DTTB standard and analysis of the PM595 working modes. IEEE Transactions on Broadcasting, 53(1):8–13CrossRefGoogle Scholar
  68. 68.
    Bae B, Kim W, Ahn C, Lee S-I, Sohng K-I (2006) Development of a T-DMB extended WIPI platform for interactive mobile broadcasting services. IEEE Transactions on Consumer Electronics, 52(4):1167–1172CrossRefGoogle Scholar
  69. 69.
    ETSI EN 300 401 v1.3.3 (2001) Radio broadcasting systems; digital audio broadcasting (DAB) to mobile, portable and fixed receiversGoogle Scholar
  70. 70.
    Fuyun Ling MR, Mantravadi A, Krishnamoorthi R, Vijayan R, Walker GK, Chandhok R (2007) FLO physical layer: An overview. IEEE Transactions on Broadcasting, 53(1): 145–160CrossRefGoogle Scholar
  71. 71.
    Gracie K, Hamon M-H (2007) Turbo and turbo-like codes: Principles and applications in telecommunications. Proceedings of the IEEE, 95(6):1228–1254CrossRefGoogle Scholar
  72. 72.
    Tanner RM (1981) A recursive approach to low complexity codes. IEEE Transactions on Information Theory, 27(5):533–547MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Richardson T, Urbanke R (2003) The renaissance of Gallager's low-density parity-check codes. IEEE Communications Magazine, 41(8):126–131CrossRefGoogle Scholar
  74. 74.
    Yang M, Ryan WE, Li Y (2004) Design of efficiently encodable moderate length high-rate irregular LDPC Codes. IEEE Transactions on Communications, 52(4):564–571CrossRefGoogle Scholar
  75. 75.
    Richardson T, Urbanke R (2001) Efficient encoding of low-density parity-check codes. IEEE Transactions on Information Theory, 47(2):638–656MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Eroz M, Sun F-W, Lee L-N (2006) An innovative low-density parity-check code design with near-Shannon-limit performance and simple implementation. IEEE Transactions on Communications, 54(1):13–17CrossRefGoogle Scholar
  77. 77.
    Di C, Proietti D, Telatar E, Richardson T, Urbanke R (2002) Finite length analysis of low-density parity-check codes on the binary erasure channel. IEEE Transactions on Information Theory, 48(6):1570–1579MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Tian T, Jones C, Villasenor JD, Wesel RD (2003) Construction of irregular LDPC codes with low error floors. IEEE ICC'03, 5:3125–3129CrossRefGoogle Scholar
  79. 79.
    MacKay DJC, Postol MS (2003) Weakness of Margulis and Ramanujan-Margulis low-density parity-check codes. In: Electronic Notes in Theoretical Computer Science. Elsevier, AmsterdamGoogle Scholar
  80. 80.
    Frey BJ, Koetter R, Vardy A (2001) Signal-space characterization of iterative decoding. IEEE Transactions on Information Theory, 47(2):766–781MATHCrossRefMathSciNetGoogle Scholar
  81. 81.
    Richardson T (2003) Error floors of LDPC codes. Proc. of 41st Annual Allerton Conf. on Comm., Control, and Comp.Google Scholar
  82. 82.
    Richardson TJ, Shokrollahi MA, Urbanke RL (2000) Design of provably good low-density parity check codes. IEEE International Symposium on Information Theory, 199Google Scholar
  83. 83.
    Chung S, Forney GD, Richardson TJ, Urbanke R (2001) On the design of low-density parity-check codes within 0.0045dB of the Shannon limit. IEEE Communications Letters, 5(2): 58–60CrossRefGoogle Scholar
  84. 84.
    Richardson TJ, Shokrollahi MA, Urbanke RL (2001) Design of capacity-approaching irregular low-density parity-check codes. IEEE Transactions on Information Theory, 47(2):619– 637MATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    ten Brink S (2001) Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Transactions on Communications, 49(10):1727–1737MATHCrossRefGoogle Scholar
  86. 86.
    Vasic B, Milenkovic O (2004) Combinatorial constructions of low-density parity-check codes for iterative decoding. IEEE Transactions on Information Theory, 50(6):1156–1176CrossRefMathSciNetGoogle Scholar
  87. 87.
    Johnson SJ, Weller SR (2003) Resolvable 2-designs for regular low-density parity-check codes. IEEE Transactions on Communications, 51(9):1413–1419CrossRefGoogle Scholar
  88. 88.
    Ammar B, Honary B, Kou Y, Lin S (2002) Construction of low density parity check codes: A combinatoric design approach. IEEE International Symposium on Information Theory, 311Google Scholar
  89. 89.
    Kou Y, Lin S, Fossorier MPC (2000) Low density parity check codes: Construction based on finite geometries. IEEE Global Telecommunications ConferenceGoogle Scholar
  90. 90.
    Fossorier MPC (2004) Quasy-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Transactions on Information Theory, 50(8):1788–1793CrossRefMathSciNetGoogle Scholar
  91. 91.
    Bond JW, Hui S, Schmidt H (2000) Constructing low-density parity-check codes. EUROCOMM 2000. IEEE/AFCEA Information Systems for Enhanced Public Safety and SecurityGoogle Scholar
  92. 92.
    Sankaranarayanan S, Vasic B, Kurtas EMA (2003) A systematic construction of irregular low-density parity-check codes from combinatorial designs. IEEE International Symposium on Information TheoryGoogle Scholar
  93. 93.
    Johnson SJ, Weller SR (2001) Construction of low-density parity-check codes from Kirkman triple systems. IEEE Global Telecommunication Conference, 2:970–974Google Scholar
  94. 94.
    Bond JW, Hui S, Schmidt H (1999) Constructing low-density parity-check codes with circulant matrices. Information Theory and Networking WorkshopGoogle Scholar
  95. 95.
    Rosenthal J, Vontobel PO (2000) Constructions of LDPC codes using Ramanujan graphs and ideas from Margulis. Proc. of 38th Allerton Conference on Communication, Control and ComputingGoogle Scholar
  96. 96.
    Margulis GA (1982) Explicit constructions of graphs without short cycles and low-density codes. Combinatorica, 2(1):71–78MATHCrossRefMathSciNetGoogle Scholar
  97. 97.
    Echard R, Shih-Chun Chang (2001) The π-rotation low-density parity check codes. IEEE Global Telecommunications ConferenceGoogle Scholar
  98. 98.
    Prabhakar A, Narayanan K (2002) Pseudorandom construction of low-density parity-check codes using linear congruential sequences. IEEE Transactions on Communications, 50(9):1389–1396CrossRefGoogle Scholar
  99. 99.
    Ammar B, Honary B, Kou Y, Xu J, Lin S (2004) Construction of low-density parity-check codes based on balanced incomplete block designs. IEEE Transactions on Information Theory, 50(6):1257–1268CrossRefMathSciNetGoogle Scholar
  100. 100.
    Tang H, Xu J, Kou Y, Lin S, Abdel-Ghaffar K (2004) On algebraic construction of Gallager and circulant low-density parity-check codes. IEEE Transactions on Information Theory, 50(6):1269–1279CrossRefMathSciNetGoogle Scholar
  101. 101.
    Chen L, Xu J, Djurdjevic I, Lin S (2004) Near-Shannon-limit quasi-cyclic low-density parity-check codes. IEEE Transactions on Communications, 52(7):1038–1042CrossRefGoogle Scholar
  102. 102.
    Djurdjevic I, Lin S, Abdel-Ghaffar K (2003) Graph—theoretic construction of low-density parity-check codes. IEEE Communications Letters, 7(4):171–173CrossRefGoogle Scholar
  103. 103.
    Hu X-Y, Eleftheriou E, Arnold DM (2001) Progressive edge-growth Tanner graphs. IEEE Global Telecommunications ConferenceGoogle Scholar
  104. 104.
    Luby MG, Mitzenmacher M, Shokrollahi MA, Spielman DA (2001) Improved low-density parity-check codes using irregular graphs. IEEE Transactions on Information Theory, 47(2):585–598MATHCrossRefMathSciNetGoogle Scholar
  105. 105.
    Echard R, Chang S-C (2002) Deterministic π-rotation low-density parity check codes. Electronics Letters, 38(10):464–465CrossRefGoogle Scholar
  106. 106.
    Mackay DJC, Wilson ST, Davey MC (1999) Comparison of construction of irregular Gallager codes. IEEE Transactions on Communications, 47(10):1449–1454CrossRefGoogle Scholar
  107. 107.
    Yang M, Ryan WE, Li Y (2004) Design of efficiently encodable moderate-length high-rate irregular LDPC codes. IEEE Transactions on Communications, 52(4):564–571CrossRefGoogle Scholar
  108. 108.
    Daneshgaran F, Laddomada M, Mondin M (2006) An algorithm for the computation of the minimum distance of LDPC codes. ETT-European Transactions on Telecommunications, 17(1):57–62CrossRefGoogle Scholar
  109. 109.
    Hou J, Siegel PH, Milstein LB, Pfister HD (2003) Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes. IEEE Transactions on Information Theory, 49(9):2141–2155CrossRefMathSciNetGoogle Scholar
  110. 110.
    Eleftheriou E, Olcer S (2002) Low-density parity-check codes for digital subscriber lines. Proc. of IEEE ICC, 3:1752–1757Google Scholar
  111. 111.
    Ha J, McLaughlin SW (2003) Optimal puncturing distributions for rate-compatible low-density parity-check codes. IEEE International Symposium on Information TheoryGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Fred Daneshgaran
    • 1
  • Massimiliano Laddomada
    • 2
  • Marina Mondin
  1. 1.California State UniversityLos AngelesUSA
  2. 2.Texas A&M University-TexarkanaUSA

Personalised recommendations