Development of the Drosophila Olfactory System

  • Veronica Rodrigues
  • Thomas Hummel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 628)


The olfactory system throughout the animal kingdom is characterized by a large number of highly specialized neuronal cell types. Olfactory receptor neurons (ORNs) in the peripheral sensory epithelium display two main differentiation features: the selective expression of a single odorant receptor out of a large genomic repertoire of receptor genes and the synaptic connection to a single type of relay neuron in the primary olfactory CNS target area. In the mouse olfactory system, odorant receptors themselves play a central role in the coordination of both types of ORN differentiation. The olfactory system of Drosophila, although similar in structural and functional organization compared to mammals, does not seem to involve odorant receptors in the selection of OR gene expression and target cell recognition, suggesting distinct developmental control mechanisms. In this chapter we summarize recent findings in Drosophila of how gene networks regulate ORN specification and differentiation in the peripheral sensory organs as well as how different cellular interactions and patterning signals organize the class-specific axonal and dendritic connectivity in the CNS target area.


Olfactory System Mushroom Body Antennal Lobe Olfactory Receptor Neuron Maxillary Palp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chklovskii DB, Koulakov AA. Maps in the brain: what can we learn from them? Annu Rev Neurosci 2004; 27:369–392.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller G. 2004 Nobel Prizes. Axel, Buck share award for deciphering how the nose knows. Science 2004; 306(5694):207.PubMedCrossRefGoogle Scholar
  3. 3.
    Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991; 65(1):175–187.PubMedCrossRefGoogle Scholar
  4. 4.
    Chess A, Simon I, Cedar H et al. Allelic inactivation regulates olfactory receptor gene expression. Cell 1994; 78(5):823–834.PubMedCrossRefGoogle Scholar
  5. 5.
    Vassar R, Ngai J, Axel R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 1993; 74(2):309–318.PubMedCrossRefGoogle Scholar
  6. 6.
    Mombaerts P, Wang F, Dulac C et al. Visualizing an olfactory sensory map. Cell 1996; 87(4):675–686.PubMedCrossRefGoogle Scholar
  7. 7.
    Vassar R, Chao SK, Sitcheran R et al. Topographic organization of sensory projections to the olfactory bulb. Cell 1994; 79(6):981–991.PubMedCrossRefGoogle Scholar
  8. 8.
    Feinstein P, Bozza T, Rodriguez I et al. Axon guidance of mouse olfactory sensory neurons by odorant receptors and the beta2 adrenergic receptor. Cell 2004; 117(6):833–846.PubMedCrossRefGoogle Scholar
  9. 9.
    Feinstein P, Mombaerts P. A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 2004; 117(6):817–831.PubMedCrossRefGoogle Scholar
  10. 10.
    Imai T, Suzuki M, Sakano H. Odorant receptor-derived cAMP signals direct axonal targeting. Science 2006; 314(5799):657–661.PubMedCrossRefGoogle Scholar
  11. 11.
    Serizawa S, Miyamichi K, Takeuchi H et al. A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 2006; 127(5):1057–1069.PubMedCrossRefGoogle Scholar
  12. 12.
    Stocker RF, Lienhard MC, Borst A et al. Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 1990; 262(1):9–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Stocker RF. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 1994; 275(1):3–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Stocker RF. Drosophila as a focus in olfactory research: mapping of olfactory sensilla by fine structure, odor specificity, odorant receptor expression and central connectivity. Microsc Res Tech 2001; 55(5):284–296.PubMedCrossRefGoogle Scholar
  15. 15.
    Stowers L. Neuronal development: specifying a hard-wired circuit. Curr Biol 2004; 14(2):R62–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Vosshall LB, Wong AM, Axel R. An olfactory sensory map in the fly brain. Cell 2000; 102(2):147–159.PubMedCrossRefGoogle Scholar
  17. 17.
    Komiyama T, Luo L. Development of wiring specificity in the olfactory system. Curr Opin Neurobiol 2006; 16(1):67–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Jefferis GS, Marin EC, Watts RJ et al. Development of neuronal connectivity in Drosophila antennal lobes and mushroom bodies. Curr Opin Neurobiol 2002; 12(1):80–86.PubMedCrossRefGoogle Scholar
  19. 19.
    Jefferis GS, Hummel T. Wiring specificity in the olfactory system. Semin Cell Dev Biol 2006; 17(1):50–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Clyne PJ, Warr CG, Freeman MR et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 1999; 22(2):327–338.PubMedCrossRefGoogle Scholar
  21. 21.
    Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 1999; 96(5):725–736.PubMedCrossRefGoogle Scholar
  22. 22.
    Lomvardas S, Barnea G, Pisapia DJ et al. Interchromosomal interactions and olfactory receptor choice. Cell 2006; 126(2):403–413.PubMedCrossRefGoogle Scholar
  23. 23.
    Ray A, van Naters WG, Shiraiwa T et al. Mechanisms of odor receptor gene choice in Drosophila. Neuron 2007; 53(3):353–369.PubMedCrossRefGoogle Scholar
  24. 24.
    Gao Q, Yuan B, Chess A. Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat Neurosci 2000; 3(8):780–785.PubMedCrossRefGoogle Scholar
  25. 25.
    Couto A, Alenius M, Dickson BJ. Molecular, anatomical and functional organization of the Drosophila olfactory system. Curr Biol 2005; 15(17):1535–1547.PubMedCrossRefGoogle Scholar
  26. 26.
    Fishilevich E, Vosshall LB. Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol 2005; 15(17):1548–1553.PubMedCrossRefGoogle Scholar
  27. 27.
    Laissue PP, Reiter C, Hiesinger PR et al. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 1999; 405(4):543–552.PubMedCrossRefGoogle Scholar
  28. 28.
    Stocker RF, Singh RN, Schorderet M et al. Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res 1983; 232(2):237–248.PubMedCrossRefGoogle Scholar
  29. 29.
    Jhaveri D, Saharan S, Sen A et al. Positioning sensory terminals in the olfactory lobe of Drosophila by Robo signaling. Development 2004; 131(9):1903–1912.PubMedCrossRefGoogle Scholar
  30. 30.
    Jhaveri D, Sen A, Rodrigues V. Mechanisms underlying olfactory neuronal connectivity in Drosophila-the atonal lineage organizes the periphery while sensory neurons and glia pattern the olfactory lobe. Dev Biol 2000; 226(1):73–87.PubMedCrossRefGoogle Scholar
  31. 31.
    Jefferis GS, Vyas RM, Berdnik D et al. Developmental origin of wiring specificity in the olfactory system of Drosophila. Development 2004; 131(1):117–130.PubMedCrossRefGoogle Scholar
  32. 32.
    Wong AM, Wang JW, Axel R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 2002; 109(2):229–241.PubMedCrossRefGoogle Scholar
  33. 33.
    Marin EC, Jefferis GS, Komiyama et al. Representation of the glomerular olfactory map in the Drosophila brain. Cell 2002; 109(2):243–255.PubMedCrossRefGoogle Scholar
  34. 34.
    Wilson RI, Turner GC, Laurent G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 2004; 303(5656):366–370.PubMedCrossRefGoogle Scholar
  35. 35.
    Wilson RI, Laurent G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 2005; 25(40):9069–9079.PubMedCrossRefGoogle Scholar
  36. 36.
    Olsen SR, Bhandawat V, Wilson RI. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 2007; 54(1):89–103.PubMedCrossRefGoogle Scholar
  37. 37.
    Shang Y, Claridge-Chang A, Sjulson L et al. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 2007; 128(3):601–612.PubMedCrossRefGoogle Scholar
  38. 38.
    Distler PG, Boeckh J. An improved model of the synaptic organization of insect olfactory glomeruli. Ann NY Acad Sci 1998; 855:508–510.PubMedCrossRefGoogle Scholar
  39. 39.
    Distler PG, Gruber C, Boeckh J. Synaptic connections between GABA-immunoreactive neurons and uniglomerular projection neurons within the antennal lobe of the cockroach, Periplaneta americana. Synapse 1998; 29(1):1–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Distler PG, Boeckh J. Synaptic connection between olfactory receptor cells and uniglomerular projection neurons in the antennal lobe of the American cockroach, Periplaneta americana. J Comp Neurol 1996; 370(1):35–46.PubMedCrossRefGoogle Scholar
  41. 41.
    Riesgo-Escovar JR, Piekos WB, Carlson JR. The Drosophila antenna: ultrastructural and physiological studies in wild-type and lozenge mutants. J Comp Physiol [A] 1997; 180(2):151–160.CrossRefGoogle Scholar
  42. 42.
    Shanbhag S, Muller, B, Steinbrecht A. Atlas of olffactory organs of Drosophila melanogaster: I Types, external organisation, innervation and distribution of olfactory sensilla. Int J Insect Morphol and Embryol 1999; 28:377–397.CrossRefGoogle Scholar
  43. 43.
    Clyne PJ, Certel SJ, de Bruyne et al. The odor specificities of a subset of olfactory receptor neurons are governed by Acj6, a POU-domain transcription factor. Neuron 1999; 22(2):339–347.PubMedCrossRefGoogle Scholar
  44. 44.
    de Bruyne M, Clyne PJ, Carlson JR. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 1999; 19(11):4520–4532.PubMedGoogle Scholar
  45. 45.
    de Bruyne M, Foster K, Carlson JR. Odor coding in the Drosophila antenna. Neuron 2001; 30(2):537–552.PubMedCrossRefGoogle Scholar
  46. 46.
    Elmore T, Ignell R, Carlson JR et al. Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J Neurosci 2003; 23(30):9906–9912.PubMedGoogle Scholar
  47. 47.
    Yao CA, Ignell R, Carlson JR. Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 2005; 25(37):8359–8367.PubMedCrossRefGoogle Scholar
  48. 48.
    van der Goes van Naters W, Carlson JR. Receptors and neurons for fly odors in Drosophila. Curr Biol 2007; 17(7):606–612.PubMedCrossRefGoogle Scholar
  49. 49.
    Haynie JL, Bryant PJ. Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J Exp Zool 1986; 237(3):293–308.PubMedCrossRefGoogle Scholar
  50. 50.
    Cohen SM, Di Nardo S. Wingless: from embryo to adult. Trends Genet 1993; 9(6):189–192.PubMedCrossRefGoogle Scholar
  51. 51.
    Jhaveri D, Sen A, Reddy GV et al. Sense organ identity in the Drosophila antenna is specified by the expression of the proneural gene atonal. Mech Dev 2000; 99(1–2):101–111.PubMedCrossRefGoogle Scholar
  52. 52.
    Gomez-Skarmeta JL, Campuzano S, Modolell J. Half a century of neural prepatterning: the story of a few bristles and many genes. Nat Rev Neurosci 2003; 4(7):587–598.PubMedCrossRefGoogle Scholar
  53. 53.
    Kiefer JC, Jarman A, Johnson J. Proneural factors and neurogenesis. Dev Dyn 2005; 234(3):808–813.PubMedCrossRefGoogle Scholar
  54. 54.
    Goulding SE, zur Lage P, Jarman AP. amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 2000; 25(1):69–78.PubMedCrossRefGoogle Scholar
  55. 55.
    Gupta BP, Rodrigues V. Atonal is a proneural gene for a subset of olfactory sense organs in Drosophila. Genes Cells 1997; 2(3):225–233.PubMedCrossRefGoogle Scholar
  56. 56.
    Jan YN, Jan LY. Neuronal cell fate specification in Drosophila. Curr Opin Neurobiol 1994; 4(1):8–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Reddy GV, Gupta B, Ray K et al. Development of the Drosophila olfactory sense organs utilizes cell-cell interactions as well as lineage. Development 1997; 124(3):703–712.PubMedGoogle Scholar
  58. 58.
    Ray K, Rodrigues V. Cellular events during development of the olfactory sense organs in Drosophila melanogaster. Dev Biol 1995; 167(2):426–438.PubMedCrossRefGoogle Scholar
  59. 59.
    zur Lage PI, Prentice DR, Holohan EE et al. The Drosophila proneural gene amos promotes olfactory sensillum formation and suppresses bristle formation. Development 2003; 130(19):4683–4693.PubMedCrossRefGoogle Scholar
  60. 60.
    Gupta BP, Flores GV, Banerjee U et al. Patterning an epidermal field: Drosophila lozenge, a member of the AML-1/Runt family of transcription factors, specifies olfactory sense organ type in a dose-dependent manner. Dev Biol 1998; 203(2):400–411.PubMedCrossRefGoogle Scholar
  61. 61.
    Venkatesh SS, Sensilla RN on the third antennal segment of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 1984; 13:51–63.CrossRefGoogle Scholar
  62. 62.
    Lienhard MC, Stocker RF. The development of the sensory neuron pattern in the antennal disc of wild-type and mutant (lz3, ssa) Drosophila melanogaster. Development 1991; 112(4):1063–1075.PubMedGoogle Scholar
  63. 63.
    Sen A, Reddy GV, Rodrigues V. Combinatorial expression of Prospero, Seven-up and Elav identifies progenitor cell types during sense-organ differentiation in the Drosophila antenna. Dev Biol 2003; 254(1):79–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Endo K, Aoki T, Yoda Y, Kimura K et al. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat Neurosci 2007; 10(2):153–160.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee T, Luo L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 2001; 24(5):251–254.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee T, Luo L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 1999; 22(3):451–461.PubMedCrossRefGoogle Scholar
  67. 67.
    Manning L, Doe CQ. Prospero distinguishes sibling cell fate without asymmetric localization in the Drosophila adult external sense organ lineage. Development 1999; 126(10):2063–2071.PubMedGoogle Scholar
  68. 68.
    Reddy GV, Rodrigues V. Sibling cell fate in the Drosophila adult external sense organ lineage is specified by prospero function, which is regulated by Numb and Notch. Development 1999; 126(10):2083–2092.PubMedGoogle Scholar
  69. 69.
    Guo M, Bier E, Jan LY, et al. tramtrack acts downstream of numb to specify distinct daughter cell fates during asymmetric cell divisions in the Drosophila PNS. Neuron 1995; 14(5):913–925.PubMedCrossRefGoogle Scholar
  70. 70.
    Jan YN, Jan LY. Asymmetric cell division. Nature 1998; 392(6678):775–778.PubMedCrossRefGoogle Scholar
  71. 71.
    Gho M, Bellaiche Y, Schweisguth F. Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell. Development 1999; 126(16):3573–3584.PubMedGoogle Scholar
  72. 72.
    Jhaveri D, Rodrigues V. Sensory neurons of the Atonal lineage pioneer the formation of glomeruli within the adult Drosophila olfactory lobe. Development 2002; 129(5):1251–1260.PubMedGoogle Scholar
  73. 73.
    Sen A, Shetty C, Jhaveri D et al. Distinct types of glial cells populate the Drosophila antenna. BMC Dev Biol 2005; 5:25.PubMedCrossRefGoogle Scholar
  74. 74.
    Hummel T, Zipursky SL. Afferent induction of olfactory glomeruli requires N-cadherin. Neuron 2004; 42(1):77–88.PubMedCrossRefGoogle Scholar
  75. 75.
    Sweeney LB, Couto A, Chou YH et al. Temporal target restriction of olfactory receptor neurons by Semaphorin-1a/PlexinA-mediated axon-axon interactions. Neuron 2007; 53(2):185–200.PubMedCrossRefGoogle Scholar
  76. 76.
    Devaud JM, Acebes A, Ramaswami M et al. Structural and functional changes in the olfactory pathway of adult Drosophila take place at a critical age. J Neurobiol 2003; 56(1):13–23.PubMedCrossRefGoogle Scholar
  77. 77.
    Bhalerao S, Sen A, Stocker R et al. Olfactory neurons expressing identified receptor genes project to subsets of glomeruli within the antennal lobe of Drosophila melanogaster. J Neurobiol 2003; 54(4):577–592.PubMedCrossRefGoogle Scholar
  78. 78.
    Mombaerts P. Axonal wiring in the mouse olfactory system. Annu Rev Cell Dev Biol 2006; 22:713–737.PubMedCrossRefGoogle Scholar
  79. 79.
    Tolbert LP, Oland LA. A role for glia in the development of organized neuropilar structures. Trends Neurosci 1989; 12(2):70–75.PubMedCrossRefGoogle Scholar
  80. 80.
    Rossler W, Oland LA, Higgins MR et al. Development of a glia-rich axon-sorting zone in the olfactory pathway of the moth Manduca sexta. J Neurosci 1999; 19(22):9865–9877.PubMedGoogle Scholar
  81. 81.
    Hummel T, Vasconcelos ML, Clemens JC et al. Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam. Neuron 2003; 37(2):221–231.PubMedCrossRefGoogle Scholar
  82. 82.
    Komiyama T, Carlson JR, Luo L. Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions. Nat Neurosci 2004; 7(8):819–825.PubMedCrossRefGoogle Scholar
  83. 83.
    Jefferis GS, Marin EC, Stocker RF et al. Target neuron prespecification in the olfactory map of Drosophila. Nature 2001; 414(6860):204–208.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhu H, Luo L. Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. Neuron 2004; 42(1):63–75.PubMedCrossRefGoogle Scholar
  85. 85.
    Zhu H, Hummel T, Clemens JC et al. Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe. Nat Neurosci 2006; 9(3):349–355.PubMedCrossRefGoogle Scholar
  86. 86.
    Komiyama T, Luo L. Intrinsic control of precise dendritic targeting by an ensemble of transcription factors. Curr Biol 2007; 17(3):278–285.PubMedCrossRefGoogle Scholar
  87. 87.
    Ang LH, Kim J, Stepensky V et al Dock and Pak regulate olfactory axon pathfinding in Drosophila. Development 2003; 130(7):1307–1316.PubMedCrossRefGoogle Scholar
  88. 88.
    Lattemann M, Zierau A, Schulte C et al. Semaphorin-la controls receptor neuron-specific axonal convergence in the primary olfactory center of Drosophila. Neuron 2007; 53(2):169–184.PubMedCrossRefGoogle Scholar
  89. 89.
    Stocker RF, Heimbeck G, Gendre N et al. Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J Neurobiol 1997; 32(5):443–456.PubMedCrossRefGoogle Scholar
  90. 90.
    Marin EC, Watts RJ, Tanaka NK, et al. Developmentally programmed remodeling of the Drosophila olfactory circuit. Development 2005; 132(4):725–737.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhu S, Lin S, Kao CF et al. Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell 2006; 127(2):409–422.PubMedCrossRefGoogle Scholar
  92. 92.
    Komiyama T, Johnson WA, Luo L et al. From lineage to wiring specificity. POU domain transcription factors control precise connections of Drosophila olfactory projection neurons. Cell 2003; 112(2):157–167.PubMedCrossRefGoogle Scholar
  93. 93.
    Komiyama T, Sweeney LB, Schuldiner O et al. Graded expression of semaphorin-1a cell-autonomously directs dendritic targeting of olfactory projection neurons. Cell 2007; 128(2):399–410.PubMedCrossRefGoogle Scholar
  94. 94.
    Tolbert LP, Sirianni PA. Requirement for olfactory axons in the induction and stabilization of olfactory glomeruli in an insect. J Comp Neurol 1990; 298(1):69–82.PubMedCrossRefGoogle Scholar
  95. 95.
    Oland LA, Orr G, Tolbert LP. Construction of a protoglomerular template by olfactory axons initiates the formation of olfactory glomeruli in the insect brain. J Neurosci 1990; 10(7):2096–2112.PubMedGoogle Scholar
  96. 96.
    Rossler W, Randolph PW, Tolbert LP et al. Axons of olfactory receptor cells of transsexually grafted antennae induce development of sexually dimorphic glomeruli in Manduca sexta. J Neurobiol 1999; 38(4):521–541.PubMedCrossRefGoogle Scholar
  97. 97.
    Berdnik D, Chihara T, Couto A et al. Wiring stability of the adult Drosophila olfactory circuit after lesion. J Neurosci 2006; 26(13):3367–3376.PubMedCrossRefGoogle Scholar
  98. 98.
    Jefferis GS, Potter CJ, Chan AM et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 2007; 128(6):1187–1203.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Veronica Rodrigues
    • 1
  • Thomas Hummel
    • 2
  1. 1.National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
  2. 2.Institut fuer NeurobiologieUniversitaet MuensterMuensterGermany

Personalised recommendations