Anteroposterior Regionalization of the Brain: Genetic and Comparative Aspects

  • Robert Lichtneckert
  • Heinrich Reichert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 628)


Developmental genetic analyses of embryonic CNS development in Drosophila have uncovered the role of key, high-order developmental control genes in anteroposterior regionalization of the brain. The gene families that have been characterized include the otd/Otx and ems/Emx genes which are involved in specification of the anterior brain, the Hox genes which are involved in the differentiation of the posterior brain and the Pax genes which are involved in the development of the anterior/posterior brain boundary zone. Taken together with work on the genetic control of mammalian CNS development, these findings indicate that all three gene sets have evolutionarily conserved roles in brain development, revealing a surprising evolutionary conservation in the molecular mechanisms of brain regionalization.


Homeobox Gene Mutant Embryo Ventral Nerve Cord Embryonic Brain Central Nervous System Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arendt D, Nubler-Jung K. Comparison of early nerve cord development in insects and vertebrates. Development 1999; 126(11):2309–2325.PubMedGoogle Scholar
  2. 2.
    Reichert H, Simeone A. Conserved usage of gap and homeotic genes in patterning the CNS. Curr Opin Neurobiol 1999; 9(5):589–595.PubMedCrossRefGoogle Scholar
  3. 3.
    Adoutte A, Balavoine G, Lartillot N et al. The new animal phylogeny: reliability and implications. Proc Natl Acad Sci USA 2000; 97(9):4453–4456.PubMedCrossRefGoogle Scholar
  4. 4.
    Younossi-Hartenstein A, Nassif C, Green P et al. Early neurogenesis of the Drosophila brain. J Comp Neurol 1996; 370(3):313–329.PubMedCrossRefGoogle Scholar
  5. 5.
    Lumsden A, Krumlauf R. Patterning the vertebrate neuraxis. Science 1996; 274(5290):1109–1115.PubMedCrossRefGoogle Scholar
  6. 6.
    Puelles L, Rubenstein JL. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 2003; 26(9):469–476.PubMedCrossRefGoogle Scholar
  7. 7.
    Dalton D, Chadwick R, McGinnis W. Expression and embryonic function of empty spiracles: a Drosophila homeo box gene with two patterning functions on the anterior-posterior axis of the embryo. Genes Dev 1989; 3(12A):1940–1956.PubMedCrossRefGoogle Scholar
  8. 8.
    Finkelstein R, Perrimon N. The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature 1990; 346(6283):485–488.PubMedCrossRefGoogle Scholar
  9. 9.
    Walldorf U, Gehring WJ. Empty spiracles, a gap gene containing a homeobox involved in Drosophila head development. EMBO J 1992; 11(6):2247–2259.PubMedGoogle Scholar
  10. 10.
    Cohen SM, Jurgens G. Mediation of Drosophila head development by gap-like segmentation genes. Nature 1990; 346(6283):482–485.PubMedCrossRefGoogle Scholar
  11. 11.
    Schmidt-Ott U, Gonzalez-Gaitan M, Jackie H et al. Number, identity and sequence of the Drosophila head segments as revealed by neural elements and their deletion patterns in mutants. Proc Natl Acad Sci USA 1994; 91(18):8363–8367.PubMedCrossRefGoogle Scholar
  12. 12.
    Urbach R, Technau GM. Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 2003; 130(16):3621–3637.PubMedCrossRefGoogle Scholar
  13. 13.
    Younossi-Hartenstein A, Green P, Liaw GJ et al. Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems and btd. Dev Biol 1997; 182(2):270–283.PubMedCrossRefGoogle Scholar
  14. 14.
    Hirth F, Therianos S, Loop T et al. Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron 1995; 15(4):769–778.PubMedCrossRefGoogle Scholar
  15. 15.
    Hartmann B, Hirth F, Walldorf U et al. Expression, regulation and function of the homeobox gene empty spiracles in brain and ventral nerve cord development of Drosophila. Mech Dev 2000; 90(2):143–153.PubMedCrossRefGoogle Scholar
  16. 16.
    Leuzinger S, Hirth F, Gerlich D et al. Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. Development 1998; 125(9):1703–1710.PubMedGoogle Scholar
  17. 17.
    Acampora D, Annino A, Tuorto F et al. Otx genes in the evolution of the vertebrate brain. Brain Res Bull 2005; 66(4–6):410–420.PubMedCrossRefGoogle Scholar
  18. 18.
    Cecchi C. Emx:2 a gene responsible for cortical development, regionalization and area specification. Gene 2002; 291(1–2):1–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Simeone A, Acampora D, Gulisano M et al. Nested expression domains of four homeobox genes in developing rostral brain. Nature 1992; 358(6388):687–690.PubMedCrossRefGoogle Scholar
  20. 20.
    Acampora D, Mazan S, Avantaggiato V et al. Epilepsy and brain abnormalities in mice lacking the Otxl gene. Nat Genet 1996; 14(2):218–222.PubMedCrossRefGoogle Scholar
  21. 21.
    Acampora D, Mazan S, Lallemand Y et al. Forebrain and midbrain regions are deleted in Otx2-/-mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 1995; 121(10):3279–3290.PubMedGoogle Scholar
  22. 22.
    Acampora D, Avantaggiato V, Tuorto F et al. Murine Otxl and Drosophila otd genes share conserved genetic functions required in invertebrate and vertebrate brain development. Development 1998; 125(9):1691–1702.PubMedGoogle Scholar
  23. 23.
    Acampora D, Boyl PP, Signore M et al. OTD/OTX2 functional equivalence depends on 5′ and 3′ UTR-mediated control of Otx2 mRNA for nucleo-cytoplasmic export and epiblast-restricted translation. Development 2001; 128(23):4801–4813.PubMedGoogle Scholar
  24. 24.
    Simeone A, Gulisano M, Acampora D et al. Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J 1992; 11(7):2541–2550.PubMedGoogle Scholar
  25. 25.
    Gulisano M, Broccoli V, Pardini C et al. Emxl and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur J Neurosci 1996; 8(5):1037–1050.PubMedCrossRefGoogle Scholar
  26. 26.
    Bishop KM, Rubenstein JL, O’Leary DD. Distinct actions of Emxl, Emx2 and Pax6 in regulating the specification of areas in the developing neocortex. J Neurosci 1 2002; 22(17):7627–7638.PubMedGoogle Scholar
  27. 27.
    Muzio L, DiBenedetto B, Stoykova A et al. Conversion of cerebral cortex into basal ganglia in Emx2(-/-) Pax6(Sey/Sey) double-mutant mice. Nat Neurosci 2002; 5(8):737–745.PubMedGoogle Scholar
  28. 28.
    Qiu M, Anderson S, Chen S et al. Mutation of the Emx-1 homeobox gene disrupts the corpus callosum. Dev Biol 1996; 178(1):174–178.PubMedCrossRefGoogle Scholar
  29. 29.
    Yoshida M, Suda Y, Matsuo I et al. Emxl and Emx2 functions in development of dorsal telencephalon. Development 1997; 124(1):101–111.PubMedGoogle Scholar
  30. 30.
    Ferrier DE, Holland PW. Ancient origin of the Hox gene cluster. Nat Rev Genet 2001; 2(1):33–38.PubMedCrossRefGoogle Scholar
  31. 31.
    Hughes CL, Kaufman TC. Hox genes and the evolution of the arthropod body plan. Evol Dev 2002; 4(6):459–499.PubMedCrossRefGoogle Scholar
  32. 32.
    Mann RS. Why are Hox genes clustered? Bioessays 1997; 19(8):661–664.PubMedCrossRefGoogle Scholar
  33. 33.
    Duboule D, Morata G. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 1994; 10(10):358–364.PubMedCrossRefGoogle Scholar
  34. 34.
    Hirth F, Hartmann B, Reichert H. Homeotic gene action in embryonic brain development of Drosophila. Development 1998; 125(9):1579–1589.PubMedGoogle Scholar
  35. 35.
    Kourakis MJ, Master VA, Lokhorst DK et al. Conserved anterior boundaries of Hox gene expression in the central nervous system of the leech Helobdella. Dev Biol 1997; 190(2):284–300.PubMedCrossRefGoogle Scholar
  36. 36.
    Lowe CJ, Wu M, Salic A et al. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 2003; 113(7):853–865.PubMedCrossRefGoogle Scholar
  37. 37.
    Wilkinson DG, Bhatt S, Cook M et al. Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 1989; 341(6241):405–409.PubMedCrossRefGoogle Scholar
  38. 38.
    Hunt P, Krumlauf R. Deciphering the Hox code: clues to patterning branchial regions of the head. Cell 1991; 66(6):1075–1078.PubMedCrossRefGoogle Scholar
  39. 39.
    Gavalas A, Studer M, Lumsden A et al. Hoxal and Hoxbl synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 1998; 125(6):1123–1136.PubMedGoogle Scholar
  40. 40.
    Studer M, Lumsden A, Ariza-McNaughton L et al. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 1996; 384(6610):630–634.PubMedCrossRefGoogle Scholar
  41. 41.
    Bruce AE, Shankland M. Expression of the head gene Lox22-Otx in the leech Helobdella and the origin of the bilaterian body plan. Dev Biol 1998; 201(1):101–112.PubMedCrossRefGoogle Scholar
  42. 42.
    Canestro C, Bassham S, Postlethwait J. Development of the central nervous system in the larvacean Oikopleura dioica and the evolution of the chordate brain. Dev Biol 2005; 285(2):298–315.PubMedCrossRefGoogle Scholar
  43. 43.
    Castro LF, Rasmussen SL, Holland PW et al. A Gbx homeobox gene in amphioxus: Insights into ancestry of the ANTP class and evolution of the midbrain/hindbrain boundary. Dev Biol 2006.Google Scholar
  44. 44.
    Hirth F, Kammermeier L, Frei E et al. An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 2003; 130(11):2365–2373.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu A, Joyner AL. Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 2001; 24:869–896.PubMedCrossRefGoogle Scholar
  46. 46.
    Wada H, Saiga H, Satoh N et al. Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development 1998; 125(6):1113–1122.PubMedGoogle Scholar
  47. 47.
    Wurst W, Bally-Cuif L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2001; 2(2):99–108.PubMedCrossRefGoogle Scholar
  48. 48.
    Noll M. Evolution and role of Pax genes. Curr Opin Genet Dev 1993; 3(4):595–605.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Robert Lichtneckert
    • 1
  • Heinrich Reichert
    • 1
  1. 1.BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations