The Development of the Drosophila Larval Brain

  • Volker Hartenstein
  • Shana Spindler
  • Wayne Pereanu
  • Siaumin Fung
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 628)


In this chapter we will start out by describing in more detail the progenitors of the nervous system, the neuroblasts and ganglion mother cells. Subsequently we will survey the generic cell types that make up the developing Drosophila brain, namely neurons, glial cells and tracheal cells. Finally, we will attempt a synopsis of the neuronal connectivity of the larval brain that can be deduced from the analysis of neural lineages and their relationship to neuropile compartments.


Primary Neuron Mushroom Body Optic Lobe Ventral Nerve Cord Axon Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Urbach R, Technau GM. Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 2003; 130(16):3621–3637.PubMedCrossRefGoogle Scholar
  2. 2.
    Younossi-Hartenstein A, Nassif C, Green P et al. Early neurogenesis of the Drosophila brain. J Comp Neurol 1996; 370(3):313–329.PubMedCrossRefGoogle Scholar
  3. 3.
    Hartenstein V, Rudloff E, Campos-Ortega JA. The pattern of proliferation of the neuroblasts in the wild-type embryo of Drosophila melanogaster. Dev Genes Evol 1987; 196:473–485.Google Scholar
  4. 4.
    Brody T, Odenwald WF. Cellular diversity in the developing nervous system: a temporal view from Drosophila. Development 2002; 129(16):3763–3770.PubMedGoogle Scholar
  5. 5.
    Ito K, Hotta Y. Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev Biol 1992; 149(1):134–148.PubMedCrossRefGoogle Scholar
  6. 6.
    Ceron J, Gonzalez C, Tejedor FJ. Patterns of cell division and expression of asymmetric cell fate deter minants in postembryonic neuroblast lineages of Drosophila. Dev Biol 2001; 230(2):125–138.PubMedCrossRefGoogle Scholar
  7. 7.
    Dumstrei K, Wang F, Hartenstein V. Role of DE-cadherin in neuroblast proliferation, neural morphogenesis and axon tract formation in Drosophila larval brain development. J Neurosci 2003; 23(8):3325–3335.PubMedGoogle Scholar
  8. 8.
    Dumstrei K, Wang F, Nassif C et al. Early development of the Drosophila brain: V. Pattern of postembryonic neuronal lineages expressing DE-cadherin. J Comp Neurol 2003; 455(4):451–462.PubMedCrossRefGoogle Scholar
  9. 9.
    Rolls MM, Albertson R, Shih HP et al. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol 2003; 163(5):1089–1098.PubMedCrossRefGoogle Scholar
  10. 10.
    Schaefer M, Shevchenko A, Knoblich JA et al. A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr Biol 2000; 10(7):353–362.PubMedCrossRefGoogle Scholar
  11. 11.
    Schober M, Schaefer M, Knoblich JA. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 1999; 402(6761):548–551.PubMedCrossRefGoogle Scholar
  12. 12.
    Wodarz A, Ramrath A, Kuchinke U et al. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 1999; 402(6761):544–547.PubMedCrossRefGoogle Scholar
  13. 13.
    Maurange C, Gould AP. Brainy but not too brainy: starting and stopping neuroblast divisions in Drosophila. Trends Neurosci 2005; 28(1):30–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Isshiki T, Pearson B, Holbrook S et al. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 2001; 106(4):511–521.PubMedCrossRefGoogle Scholar
  15. 15.
    Bilder D. Cell polarity: squaring the circle. Curr Biol 2001; 11(4):R132–135.PubMedCrossRefGoogle Scholar
  16. 16.
    Doe CQ, Bowerman B. Asymmetric cell division: fly neuroblast meets worm zygote. Curr Opin Cell Biol 2001; 13(1):68–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Ebens AJ, Garren H, Cheyette BN et al. The Drosophila anachronism locus: a glycoprotein secreted by glia inhibits neuroblast proliferation. Cell 1993; 74(1): 15–27.PubMedCrossRefGoogle Scholar
  18. 18.
    Bello BC, Hirth F, Gould AP. A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 2003; 37(2):209–219.PubMedCrossRefGoogle Scholar
  19. 19.
    Voigt A, Pflanz R, Schafer U et al. Perlecan participates in proliferation activation of quiescent Drosophila neuroblasts. Dev Dyn 2002; 224(4):403–412.PubMedCrossRefGoogle Scholar
  20. 20.
    Park Y, Rangel C, Reynolds MM et al. Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev Biol 2003; 253(2):247–257.PubMedCrossRefGoogle Scholar
  21. 21.
    Datta S. Control of proliferation activation in quiescent neuroblasts of the Drosophila central nervous system. Development 1995; 121(4):1173–1182.PubMedGoogle Scholar
  22. 22.
    Caldwell MC, Datta S. Expression of cyclin E or DP/E2F rescues the G1 arrest of trol mutant neuroblasts in the Drosophila larval central nervous system. Mech Dev 1998; 79(1–2):121–130.PubMedCrossRefGoogle Scholar
  23. 23.
    Park Y, Ng C, Datta S. Induction of string rescues the neuroblast proliferation defect in trol mutant animals. Genesis 2003; 36(4): 187–195.PubMedCrossRefGoogle Scholar
  24. 24.
    Almeida MS, Bray SJ. Regulation of post-embryonic neuroblasts by Drosophila Grainyhead. Mech Dev 2005; 122(12):1282–1293.PubMedCrossRefGoogle Scholar
  25. 25.
    Akong K, Grevengoed EE, Price MH et al. Drosophila APC2 and APC1 play overlapping roles in wingless signaling in the embryo and imaginal discs. Dev Biol 2002; 250(1):91–100.PubMedCrossRefGoogle Scholar
  26. 26.
    Strausfeld NJ. Altas of an Insect Brain. Springer, 1976.Google Scholar
  27. 27.
    Crittenden JR, Skoulakis EM, Han KA et al. Tripartite mushroom body architecture revealed by antigenic markers. Learn Mem 1998; 5(1–2):38–51.PubMedGoogle Scholar
  28. 28.
    Ito K, Awano W, Suzuki K et al. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 1997; 124(4):761–771.PubMedGoogle Scholar
  29. 29.
    Noveen A, Daniel A, Hartenstein V. Early development of the Drosophila mushroom body: the roles of eyeless and dachshund. Development 2000; 127(16):3475–3488.PubMedGoogle Scholar
  30. 30.
    Tettamanti M, Armstrong JD, Endo K et al. Early development of the Drosophila mushroom bodies, brain centres for associative learning and memory. Dev Genes Evol 1997; 207(4):242–252.CrossRefGoogle Scholar
  31. 31.
    Ito K, Suzuki K, Estes P et al. The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn Mem 1998; 5(1–2):52–77.PubMedGoogle Scholar
  32. 32.
    Bossing T, Udolph G, Doe CQ et al. The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol 1996; 179(1):41–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Schmidt H, Rickert C, Bossing T et al. The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev Biol 1997; 189(2):186–204.PubMedCrossRefGoogle Scholar
  34. 34.
    Prokop A, Meinertzhagen IA. Development and structure of synaptic contacts in Drosophila. Semin Cell Dev Biol 2006; 17(1):20–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Sanchez-Soriano N, Bottenberg W, Fiala A et al. Are dendrites in Drosophila homologous to vertebrate dendrites? Dev Biol 2005; 288(1):126–138.PubMedCrossRefGoogle Scholar
  36. 36.
    Clark IE, Jan LY, Jan YN. Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle. Development 1997; 124(2):461–470.PubMedGoogle Scholar
  37. 37.
    Chang T, Younossi-Hartenstein A, Hartenstein V. Development of neural lineages derived from the sine oculis positive eye field of Drosophila. Arhtropod Stru Dev 2003; 32:303–317.CrossRefGoogle Scholar
  38. 38.
    Pereanu W, Hartenstein V. Neural lineages of the Drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage. J Neurosci 2006; 26(20):5534–5553.PubMedCrossRefGoogle Scholar
  39. 39.
    Camera R. Glial cells in adult and developing prothoracic ganglion of the hawk moth Manduca sexta. Cell Tiss Res 1993; 272:93–108.CrossRefGoogle Scholar
  40. 40.
    Hoyle G. Glial cells of an insect ganglion. J Comp Neurol 1986; 246(1):85–103.PubMedCrossRefGoogle Scholar
  41. 41.
    Ito K, Urbach R, Technau GM. Distribution, classification and development of Drosophila glia cells in the late embryonic and early larval ventral nerve cord. Dev Genes Evol 1995; 204:284–307.Google Scholar
  42. 42.
    Saint Marie RL, Carlson SD, Chi C. The Glial Cells of Insects. New York, NY: Plenum 1984.Google Scholar
  43. 43.
    Lane N. Insect intercellular junctions: Their structure and development. New York: Plenum 1982.Google Scholar
  44. 44.
    Hoyle G, Williams M, Phillips C. Functional morphology of insect neuronal cell-surface/glial contacts: the trophospongium. J Comp Neurol 1986; 246(1):113–128.PubMedCrossRefGoogle Scholar
  45. 45.
    Hidalgo A. Neuron-glia interactions during axon guidance in Drosophila. Biochem Soc Trans 2003; 31 (Pt l):50–55.PubMedCrossRefGoogle Scholar
  46. 46.
    Pielage J, Klambt C. Glial cells aid axonal target selection. Trends Neurosci 2001; 24(8):432–433.PubMedCrossRefGoogle Scholar
  47. 47.
    Sepp KJ, Auld VJ. Reciprocal interactions between neurons and glia are required for Drosophila peripheral nervous system development. J Neurosci 2003; 23(23):8221–8230.PubMedGoogle Scholar
  48. 48.
    Sepp KJ, Schulte J, Auld VJ. Peripheral glia direct axon guidance across the CNS/PNS transition zone. Dev Biol 2001; 238(1):47–63.PubMedCrossRefGoogle Scholar
  49. 49.
    Oland LA, Tolbert LP. Key interactions between neurons and glial cells during neural development in insects. Annu Rev Entomol 2003; 48:89–110.PubMedCrossRefGoogle Scholar
  50. 50.
    Hartenstein V, Nassif C, Lekven A. Embryonic development of the Drosophila brain. II. Pattern of glial cells. J Comp Neurol 1998; 402(1):32–47.PubMedCrossRefGoogle Scholar
  51. 51.
    Pereanu W, Shy D, Hartenstein V. Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol 2005; 283(1):191–203.PubMedCrossRefGoogle Scholar
  52. 52.
    Younossi-Hartenstein A, Nguyen B, Shy D et al. Embryonic origin of the Drosophila brain neuropile. J Comp Neurol 2006; 497(6):981–998.PubMedCrossRefGoogle Scholar
  53. 53.
    Pereanu W, Spindler S, Cruz L et al. Tracheal development in the Drosophila brain is constrained by glial cells. Dev Biol 2006.Google Scholar
  54. 54.
    Manning G, Krasnow MA. Development of the Drosophila tracheal system. New York: Cold Spring Harbor, Laboratory Press 1993.Google Scholar
  55. 55.
    Englund C, Uv AE, Cantera R et al. adrift, a novel bnl-induced Drosophila gene, required for tracheal pathfinding into the CNS. Development 1999; 126(7):1505–1514.PubMedGoogle Scholar
  56. 56.
    Nassif C, Noveen A, Hartenstein V. Embryonic development of the Drosophila brain. I. Pattern of pioneer tracts. J Comp Neurol 1998; 402(1):10–31.PubMedCrossRefGoogle Scholar
  57. 57.
    Nassif C, Noveen A, Hartenstein V. Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J Comp Neurol 2003; 455(4):417–434.PubMedCrossRefGoogle Scholar
  58. 58.
    Goodman CS, Doe CQ. Embryonic development of the Drosophila central nervous system. New York: Cold Spring Harbor Laboratory Press, 1993.Google Scholar
  59. 59.
    Hirth F, Kammermeier L, Frei E et al. An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 2003; 130(11):2365–2373.PubMedCrossRefGoogle Scholar
  60. 60.
    Therianos S, Leuzinger S, Hirth F et al. Embryonic development of the Drosophila brain: formation of commissural and descending pathways. Development 1995; 121(11):3849–3860.PubMedGoogle Scholar
  61. 61.
    Strausfeld NJ, Bassemir U, Singh RN et al. Organizational principles of outputs from Dipteran brains. J Ins Physiol 1984; 30(1):73–93.CrossRefGoogle Scholar
  62. 62.
    Armstrong JD, de Belle JS, Wang Z et al. Metamorphosis of the mushroom bodies; large-scale rearrangements of the neural substrates for associative learning and memory in Drosophila. Learn Mem 1998; 5(1–2):102–114.PubMedGoogle Scholar
  63. 63.
    Zhu S, Chiang AS, Lee T. Development of the Drosophila mushroom bodies: elaboration, remodeling and spatial organization of dendrites in the calyx. Development 2003; 130(12):2603–2610.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Volker Hartenstein
    • 1
  • Shana Spindler
    • 1
  • Wayne Pereanu
    • 1
  • Siaumin Fung
    • 1
  1. 1.Department of Molecular Cell and Developmental BiologyUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations