Wolbachia- Based Technologies for Insect Pest Population Control

  • Kostas Bourtzis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 627)


Wfolbachia are a group of obligatory intracellular and maternally inherited bacteria found in many arthropod species, including insects, mites, spiders, springtails, crustaceans, as well as in certain nematodes. Several PCR-based surveys suggest that over 20% of the arthropod species may be Wolbachia- infected, rendering this bacterium the most ubiquitous intracellular symbiont yet described. Wolbachia have recently attracted attention for their potential as novel and environmentally friendly bio-control agents. Wolbachia are able to invade and maintain themselves in the arthropod species through manipulation of the host’s reproduction. Several strategies can be distinguished, one of which is cytoplasmic incompatibility (CI). Wolbachia- induced cytoplasmic incompatibility can be used beneficially in the following ways: (a) as a tool for insect pest population control in a way analogous to the “Sterile Insect technique” (SIT) and (b) as a drive system to spread desirable genotypes in field arthropod populations. In addition, virulent Wolbachia strains offer the potential to control vector species by modifying their population age structure. In the present chapter, I summarize the recent developments in Wolbachia research with an emphasis on the applied biology of Wolbachia and conclude with the challenges that Wolbachia researchers will face if they want to use and/or introduce Wolbachia into pest and vector species of economic, environmental and public health relevance and, through Wolbachia- based technologies, to suppress or modify natural populations.


Sterile Insect Technique Cytoplasmic Incompatibility Arthropod Species Wolbachia Infection Wolbachia Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Neill SL, Giordano R, Colbert AME et al. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 1992; 89:2699–2702.PubMedCrossRefGoogle Scholar
  2. 2.
    Hertig M. The rickettsia, Wolbachia pipientis and associated inclusions of the mosquito, Culex pipiens. Parasitology 1936; 28:453–490.CrossRefGoogle Scholar
  3. 3.
    Werren JH, Zhang W, Guo LR. Evolution and phylogeny of Wolbachia-reproductive parasites of arthropods. Proc R Soc Lond B Biol Sci 1995; 261:55–63.CrossRefGoogle Scholar
  4. 4.
    Breeuwer JAJ, Jacobs G. Wolbachia: Intracellular manipulators of mite reproduction. Exp Appl Acarol 1996; 20:421–434.PubMedCrossRefGoogle Scholar
  5. 5.
    Werren JH. Biology of Wolbachia. Annu Rev Entomol 1997; 42:587–609.PubMedCrossRefGoogle Scholar
  6. 6.
    Werren JH, O’Neill SL. The evolution of heritable symbionts. In: O’Neill SL, Hoffmann AA, Werren JH, eds. Influential passengers: Inherited microorganisms and arthropod reproduction. Oxford: Oxford University Press, 1997:1–41.Google Scholar
  7. 7.
    Bandi C, Anderson TJC, Genchi C et al. Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond B Biol Sci 1998; 265:2407–2413.CrossRefGoogle Scholar
  8. 8.
    Stouthamer R, Breeuwer JAJ, Hurst GDD. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu Rev Microbiol 1999; 53:71–102.PubMedCrossRefGoogle Scholar
  9. 9.
    Bourtzis K, Braig HR. The many faces of Wolbachia. In: Raoult D, Brouqui P, eds. Rickettsiae and Rickettsial Diseases at the Turn of the Third Millennium. Paris: Elsevier, 1999:199–219.Google Scholar
  10. 10.
    Jeyaprakash A, Hoy MA. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of 63 arthropod species. Insect Mol Biol 2000; 9:393–405.PubMedCrossRefGoogle Scholar
  11. 11.
    In: Bo5urtzis K, Miller T, eds. Insect Symbiosis. Florida: CRC Press, 2003:1–347.Google Scholar
  12. 12.
    Breeuwer JAJ, Stouthamer R, Barns SM et al. Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol Biol 1992; 1:25–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Rousset F, Bouchon D, Pintureau B et al. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc Lond B Biol Sci 1992; 250:91–98.CrossRefGoogle Scholar
  14. 14.
    Lo N, Casiraghi M, Salati E et al. How many Wolbachia supergroups exist? Mol Biol Evol 2002; 19:341–346.PubMedGoogle Scholar
  15. 15.
    Rowley SM, Raven RJ, McGraw EA. Wolbachia pipientis in Australian spiders. Curr Microbiol 2004; 49:208–214.PubMedCrossRefGoogle Scholar
  16. 16.
    Bordenstein S, Rosengaus RB. Discovery of a novel Wolbachia supergroup in isoptera. Curr Microbiol 2005; 51:393–398.PubMedCrossRefGoogle Scholar
  17. 17.
    Werren JH, Winsdor DM. Wolbachia infection frequencies in insects: Evidence of a global equilibrium? Proc R Soc Lond B Biol Sci 2000; 267:1277–1285.CrossRefGoogle Scholar
  18. 18.
    Casiraghi M, Bordenstein SR, Baldo L et al. Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: Clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 2005; 151:4015–4022.PubMedCrossRefGoogle Scholar
  19. 19.
    Parask-evopoulos C, Bordenstein SR, Wernegreen J et al. Towards a Wolbachia multilocus sequence typing system: Discrimination of Wolbachia strains present in Drosophila species. Curr Microbiol 2006, 388–395.Google Scholar
  20. 20.
    Baldo L, Dunning Hotopp JC, Jolley KA et al. A multilocus sequence typing system for the endosymbiont Wolbachia. Appl Environ Microbiol 2006, (in press).Google Scholar
  21. 21.
    Ghelelovitch S. Sur le diterminisme ginitique de la stiriliti dans les croisements entre diffirentes souches de Culex autogenicus Roubaud. C R Acad Sci III Vie 1952; 234:2386–2388.Google Scholar
  22. 22.
    Laven H. Speciation and evolution in Culex pipiens. In: Wright J, Pal R, eds. Genetics of insect vectors of disease. Amsterdam: Elsevier, 1967:251–275.Google Scholar
  23. 23.
    Yen JH, Barr AR. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 1971; 232:657–658.PubMedCrossRefGoogle Scholar
  24. 24.
    Yen JH, Barr AR. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol 1973; 22:242–250.PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffman AA, Turelli M. Cytoplasmic incompatibility in insects. In: O’Neill SL, Hoffmann AA, Werren JH, eds. Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford: Oxford University Press, 1997:42–80.Google Scholar
  26. 26.
    Bourtzis K, Braig HR, Karr TL. Cytoplasmic Incompatibility. In: Bourtzis K, Miller T, eds. Insect Symbiosis. Florida: CRC Press, 2003:217–246.Google Scholar
  27. 27.
    Turelli M, Hoffmann AA. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 1991; 353:440–442.PubMedCrossRefGoogle Scholar
  28. 28.
    Breeuwer JA, Werren JH. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 1990; 346:558–560.PubMedCrossRefGoogle Scholar
  29. 29.
    O’Neill SL, Karr TL. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 1990; 348:178–180.PubMedCrossRefGoogle Scholar
  30. 30.
    Reed KM, Werren JH. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): A comparative study of early embryonic events. Mol Reprod Dev 1995; 40:408–418.PubMedCrossRefGoogle Scholar
  31. 31.
    Callaini GM, Riparbelli G, Giordano R et al. Mitotic defects associated with cytoplasmic incompatibility in Drosophila simulans. J Invert Pathol 1996; 67:55–64.CrossRefGoogle Scholar
  32. 32.
    Callaini G, Dallai R, Riparbelli MG. Wolbachia-induced delay chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J Cell Sci 1997; 110:271–280.PubMedGoogle Scholar
  33. 33.
    Tram U, Sullivan W. Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 2002; 296:1124–1126.PubMedCrossRefGoogle Scholar
  34. 34.
    Tram U, Ferree PA, Sullivan W. Identification of Wolbachia-host interacting factors through cytological analysis. Microbes Infect 2003; 11:999–1011.CrossRefGoogle Scholar
  35. 35.
    Poinsot D, Charlat S, Mercot H. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: Confronting the models with the facts. Bioessays 2003; 25:259–265.PubMedCrossRefGoogle Scholar
  36. 36.
    Masui S, Kamoda S, Sasaki T et al. Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 2000; 51:491–497.PubMedGoogle Scholar
  37. 37.
    Masui S, Kuroiwa H, Sasaki T et al. Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods. Biochem Biophys Res Commun 2001; 283:1099–1104.PubMedCrossRefGoogle Scholar
  38. 38.
    Fujii Y, Kubo T, Ishikawa H et al. Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem Biophys Res Commun 2004; 317:1183–1188.PubMedCrossRefGoogle Scholar
  39. 39.
    Sinkins SP, Walker T, Lynd AR et al. Wolbachia variability and host effects associated with crossing type in Culex mosquitoes. Nature 2005; 436:257–260.PubMedCrossRefGoogle Scholar
  40. 40.
    Duron O, Fort P, Weill M. Hypervariable prophage WO sequences describe an unexpected high number of Wolbachia variants in the mosquito Culex pipiens. Proc R Soc Lond B Biol Sci 2006; 273:495–502.CrossRefGoogle Scholar
  41. 41.
    Bordenstein SR, Marshall ML, Fry AJ et al. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathogens 2:e43.Google Scholar
  42. 42.
    Boyle L, O’Neill SL, Robertson HM et al. Inter-and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 1993; 260:1796–1799.PubMedCrossRefGoogle Scholar
  43. 43.
    Poinsot D, Bourtzis K, Markakis G et al. Wolbachia transfer from Drosophila melanogaster to D. simulans: Host effect and cytoplasmic incompatibility relationships. Genetics 1998; 150:227–237.PubMedGoogle Scholar
  44. 44.
    Singh KRP, Curtis CF, Krishnamurthy BS. Partial loss of cytoplasmic incompatibility with age in males of Culex fatigans Wied. Ann Trop Med Parasit 1976; 70:463–466.PubMedGoogle Scholar
  45. 45.
    Hoffmann AA, Turelli M, Simmons GM. Unidirectional incompatibility between populations of Drosophila simulans. Evolution 1986; 40:692–701.CrossRefGoogle Scholar
  46. 46.
    Hoffmann AA. Partial cytoplasmic incompatibility between two Australian populations of Drosophila melanogaster. Entomol Exp Appl 1988; 48:61–67.CrossRefGoogle Scholar
  47. 47.
    Clancy DJ, Hoffmann AA. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol Exp Appl 1998; 86:13–24.CrossRefGoogle Scholar
  48. 48.
    Jamnongluk W, Kittayapong P, Baisley KJ et al. Wolbachia infection and expression of cytoplasmic incompatibility in Armigeres subalbatus (Diptera: Culicidae). J Med Entomol 2000; 37:53–57.PubMedCrossRefGoogle Scholar
  49. 49.
    Reynolds KT, Hoffmann AA. Male age and the weak expression or nonexpression of cytoplasmic incompatibility in Drosophila strains infected by maternally-transmitted Wolbachia. Genet Res 2002; 80:79–87.PubMedCrossRefGoogle Scholar
  50. 50.
    Kittayapong P, Mongkalangoon P, Baimai V et al. Host age effect and expression of cytoplasmic incompatibility in field populations of Wolbachia-superinfected Aedes albopictus. Heredity 2002; 88:270–274.PubMedCrossRefGoogle Scholar
  51. 51.
    Reynolds KT, Thomson LJ, Hoffmann AA. The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster. Genetics 2003; 164:1027–1034.PubMedGoogle Scholar
  52. 52.
    Karr TL, Yang W, Feder ME. Overcoming cytoplasmic incompatibility in Drosophila. Proc R Soc Lond B Biol Sci 1998; 265:391–395.CrossRefGoogle Scholar
  53. 53.
    Champion de Crespigny FE, Wedell N. Wolbachia infection reduces sperm competitive ability in an insect. Proc R Soc Lond B Biol Sci 2006; 273:1455–1458.CrossRefGoogle Scholar
  54. 54.
    Stevens L. Environmental factors affecting reproductive incompatibility in flour beetles, genus Tribolium. J Invert Pathol 1989; 53:78–84.CrossRefGoogle Scholar
  55. 55.
    Sinkins SP, Braig HR, O’Neill SL. Wolbachia pipientis: Bacterial density and unidirectional incompatibility between infected populations of Aedes albopictus. Exp Parasitol 1995; 81:284–291.PubMedCrossRefGoogle Scholar
  56. 56.
    Beard CB, O’Neill SL, Tesh RB et al. Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today 1993; 9:179–183.PubMedCrossRefGoogle Scholar
  57. 57.
    Bourtzis K, O’Neill SL. Wolbachia infections and their influence on arthropod reproduction. Bioscience 1998; 48:287–293.CrossRefGoogle Scholar
  58. 58.
    Sinkins SP, Curtis CF, O’Neill SL. The potential application of inherited symbiont systems to pest control. In: O’Neill SL, Hoffmann AA, Werren JH, eds. Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford: Oxford University Press, 1997:155–175.Google Scholar
  59. 59.
    Ashburner M, Hoy MA, Peloquin JJ. Prospects for the genetic transformation of arthropods. Insect Mol Biol 1998; 7:201–213.PubMedCrossRefGoogle Scholar
  60. 60.
    Sinkins SP, O’Neill SL. Wolbachia as a vehicle to modify insect populations. In: Handler A, James A, eds. Insect Transgenesis. Boca Raton: CRC Press, 2000:271–287.Google Scholar
  61. 61.
    Aksoy S, Maudlin I, Dale C et al. Prospects for control of African trypanosomiasis by tsetse vector manipulation. Trends Parasitol 2001; 17:29–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Braig HR, Guzman H, Tesh RB et al. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature 1994; 367:453–455.PubMedCrossRefGoogle Scholar
  63. 63.
    Giordano R, O’Neill SL, Robertson HM. Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechelllia and D. mauritiana. Genetics 1995; 140:1307–1317.PubMedGoogle Scholar
  64. 64.
    Clancy DJ, Hoffmann AA. Behavior of Wolbachia endosymbionts from Drosophila simulans in Drosophila serrata, a novel host. Am Nat 1997; 149:975–988.CrossRefPubMedGoogle Scholar
  65. 65.
    Rousset F, Braig HR, O’Neill SL. A stable triple Wolbachia infection in Drosophila with nearly additive incompatibility effects. Heredity 1999; 82:620–627.PubMedCrossRefGoogle Scholar
  66. 66.
    Sasaki T, Ishikawa, H. Transfection of Wolbachia in the Meditteranean flour moth, Ephestia kuehniella, by embryonic microinjection. Heredity 2000; 85:130–135.PubMedCrossRefGoogle Scholar
  67. 67.
    Charlat S, Nirgianaki A, Bourtzis K et al. Evolution of Wolbachia-induced cytoplasmic incompatibility in Drosophila simulans and D. sechellia. Evolution 2002; 56:1735–1742.PubMedGoogle Scholar
  68. 68.
    McGraw EA, Merritt DJ, Droller JN et al. Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci USA 2002; 99:2918–2923.PubMedCrossRefGoogle Scholar
  69. 69.
    Riegler M, Charlat S, Stauffer C et al. Wolbachia transfer from Rhagpletis cerasi to Drosophila simulans: Investigating the outcomes of host-symbiont coevolution. Appl Environ Microbiol 2004; 70:273–279.PubMedCrossRefGoogle Scholar
  70. 70.
    Zabalou S, Charlat S, Nirgianaki A et al. Natural Wolbachia infections in the Drosophila yakuba species complex do not induce cytoplasmic incompatibility but fully rescue the wRi modification. Genetics 2004a; 167:827–834.PubMedCrossRefGoogle Scholar
  71. 71.
    Zabalou S, Riegler M, Theodorakopoulou M et al. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 2004b; 101:15042–15045.PubMedCrossRefGoogle Scholar
  72. 72.
    Xi Z, Khoo CCH, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 2005; 310:326–328.PubMedCrossRefGoogle Scholar
  73. 73.
    Boiler EF, Russ K, Vallo V et al. Incompatible races of European cherry fruit fly Rhagoletis cerasi (Diptera: Tephritidae) their origin and potential use in biological control. Entomol Exp Appl 1976; 20:237–247.CrossRefGoogle Scholar
  74. 74.
    Brower JH. Suppression of laboratory populations of Ephestia cautella (Walker) (Lepidoptera: Pyralidae) by release of males with cytoplasmic incompatibility. J Stored Prod Res 1979; 15:1–4.CrossRefGoogle Scholar
  75. 75.
    Brower JH. Reduction of almond moth populations in simulated storages by the release of genetically incompatible males. J Econ Entomol 1980; 73:415–418.Google Scholar
  76. 76.
    Boiler EF. Cytoplasmic incompatibility in Rhagoletis cerasi. In: Robinson AS, Hooper G, eds. Fruit Flies, Their Biology, Natural Enemies and Control. World Crop Pests 3B. Amsterdam: Elsevier, 1989:69–74.Google Scholar
  77. 77.
    Bourtzis K, Robinson AS. Insect pest control using Wolbachia and/or radiation. In: Bourtzis K, Miller T, eds. Insect Symbiosis 2. Florida: Taylor and Francis Group, LLC, 2006, (in press).Google Scholar
  78. 78.
    Boiler EF, Bush GL. Evidence for genetic variation in populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae) based on physiological parameters and hybridization experiments. Entomol Exp Appl 1974; 17:279–293.CrossRefGoogle Scholar
  79. 79.
    In: Robinson AS, Hooper G, eds. Fruit Flies, Their Biology, Natural Enemies and Control. World Crop Pests 3B. Amsterdam: Elsevier, 1989.Google Scholar
  80. 80.
    Bourtzis K, Nirgianaki A, Onyango P et al. A prokaryotic dnaA sequence in Drosophila melanogaster: Wolbachia infection and cytoplasmic incompatibility among laboratory strains. Insect Mol Biol 1994; 3:131–142.PubMedCrossRefGoogle Scholar
  81. 81.
    Rocha LS, Mascarenias RO, Perondini ALP et al. Occurrence of Wolbachia in Brazilian samples of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Neotropical Entomol 2005; 34:1013–1015.Google Scholar
  82. 82.
    Robinson AS, Franz G, Fisher K. Genetic sexing strains in the medfly, Ceratitis capitata: Development, mass rearing and field application. Trends Entomol 1999; 2:81–104.Google Scholar
  83. 83.
    Franz GF. Genetic sexing strains in Mediterannean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, eds. Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Dordrecht: Springer, 2005:427–451.Google Scholar
  84. 84.
    Arunachalam N, Curtis CF. Integration of radiation with cytoplasmic incompatibility for genetic control in the Culex pipiens complex (Diptera: Culicidae). J Med Entomol 1985; 22:648–653.PubMedGoogle Scholar
  85. 85.
    Sinkins SP, Gould F. Gene drive systems for insect disease vectors. Nat Rev Genetics 2006; 7:427–435.CrossRefGoogle Scholar
  86. 86.
    Ribeiro JM, Kidwell MG. Transposable elements as population drive mechanisms: Specification of critical parameter values. J Med Entomol 1994; 31:10–16.PubMedGoogle Scholar
  87. 87.
    Braig HR, Yan G. The spread of genetic constructs in natural insect populations. In: Letourneau DK, Burrows BE, eds. Genetically Engineered Organisms: Assessing Environmental and Human Health Effects. Boca Raton: CRC Press, 2001:251–314.Google Scholar
  88. 88.
    Lyttle TW. Cheaters sometimes prosper: Distortion of mendelian segregation by meiotic drive. Trends Genet 1993; 9:205–210.PubMedCrossRefGoogle Scholar
  89. 89.
    Taylor DR, Ingvarsson PK. Common features of segregation distortion in plants and animals. Genetics 2003; 117:27–35.CrossRefGoogle Scholar
  90. 90.
    Turelli M, Hoffman AA. Cytoplasmic incompatibility in Drosophila simulans: Dynamics and parameter estimates from natural populations. Genetics 1995; 140:1319–1338.PubMedGoogle Scholar
  91. 91.
    Hoshizaki S, Shimada T. PCR-based detection of Wolbachia, cytoplasmic incompatibility microorganisms, infected in natural populations of Laodelphax striatellus (Homoptera: Delphacidae) in central Japan: Has the distribution of Wolbachia spread recently? Insect Mol Biol 1995; 4:237–243.PubMedCrossRefGoogle Scholar
  92. 92.
    Sinkins SP. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem Mol Biol 2004; 34:723–729.PubMedCrossRefGoogle Scholar
  93. 93.
    Sinkins SP, Godfray HCJ. Use of Wolbachia to drive nuclear transgenes through insect populations. Proc R Soc Lond B Biol Sci 2004; 271:1421–1426.CrossRefGoogle Scholar
  94. 94.
    Dobson SL, Bourtzis K, Braig HR et al. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 1997; 29:153–160.CrossRefGoogle Scholar
  95. 95.
    Cheng Q, Ruel TD, Zhou W et al. Tissue distribution and prevalence of Wolbachia infections in tsetse flies, Glossina spp. Med Vet Entomol 2000; 14:44–50.CrossRefGoogle Scholar
  96. 96.
    Min KT, Benzer S. Wolbachia, normally symbiont of Drosophila, can be virulent, causing degeneration and death. Proc Natl Acad Sci USA 1997; 94:10792–10796.PubMedCrossRefGoogle Scholar
  97. 97.
    Stouthamer R. The use of sexual versus asexual wasps in biological control. Entomophaga 1993; 38:3–6.CrossRefGoogle Scholar
  98. 98.
    Cheng Q, Aksoy S. Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol 1999; 8:125–132.PubMedCrossRefGoogle Scholar
  99. 99.
    Wu M, Sun LV, Vamathevan J et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: A streamlined genome overrun by mobile genetic elements. PLoS Biology 2004; 2:e69.PubMedCrossRefGoogle Scholar
  100. 100.
    Foster J, Ganatra M, Kamal I et al. The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode. PLoS Biology 2005; 3:el21.CrossRefGoogle Scholar
  101. 101.
    Oehler S, Bourtzis K. First International Wolbachia Conference: Wolbachia 2000. Symbiosis 2000; 29:151–161.Google Scholar
  102. 102.
    Salzberg SL, Dunning Hotopp JC, Delcher AL et al. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 2005a; 6:R23.PubMedCrossRefGoogle Scholar
  103. 103.
    Salzberg SL, Dunning Hotopp JC, Delcher AL et al. Correction: Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 2005b; 6:402.PubMedCrossRefGoogle Scholar
  104. 104.
    Fenn K, Blaxter M. Wolbachia genomes: Revealing the biology of parasitism and mutualism. Trends Parasitol 2006; 22:60–65.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Department of Environmental and Natural Resources ManagementUniversity of loanninaAgrinioGreece

Personalised recommendations