Insect Population Suppression Using Engineered Insects

  • Luke Alphey
  • Derric Nimmo
  • Sinead O’Connell
  • Nina Alphey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 627)


Suppression or elimination of vector populations is a tried and tested method for reducing vector-borne disease, and a key component of integrated control programs. Genetic methods have the potential to provide new and improved methods for vector control. The required genetic technology is simpler than that required for strategies based on population replacement and is likely to be available earlier. In particular, genetic methods that enhance the Sterile Insect Technique (e.g., RIDL™) are already available for some species.


Sterile Insect Technique Wild Type Male Wild Female Econ Entomol World Screwworm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 2003; 270:921–928.PubMedCrossRefGoogle Scholar
  2. 2.
    Burt A, Trivers R. Genes in conflict: The biology of selfish genetic elements. Cambridge, MA: Harvard University Press, 2006.Google Scholar
  3. 3.
    In: Dyck V, Hendrichs J, Robinson A, eds. Sterile Insect Technique: Principles and practice in area-wide Integrated Pest Management. Dordrecht: Springer, 2005.Google Scholar
  4. 4.
    Klassen W, Curtis CF. In: Dyck VA, Hendrichs J, Robinson AS, eds. Sterile Insect Technique. Principles and practice in area-wide integrated pest management. The Netherlands: Springer, 2005:3–36.Google Scholar
  5. 5.
    Vanderplank FL. Hybridization between Glossina species and suggested new method for control of certain species of Tsetse. Nature 1944; 154:607–608.CrossRefGoogle Scholar
  6. 6.
    Wyss JH. In: Tan KH, ed. Area-Wide Control of Fruit Flies and Other Insect Pests. Penang: Penerbit Universiti Sains Malaysia, 2000:79–86.Google Scholar
  7. 7.
    In: Keng-Hong T, ed. Area-wide control of fruit flies and other insect pests. Penang: Penerbit Universiti Sains Malaysia, 2000.Google Scholar
  8. 8.
    Krafsur E. Sterile insect technique for suppressing and eradicating insect populations: 55 years and counting. J Agric Entomol 1998; 15:303–317.Google Scholar
  9. 9.
    Koyama J, Kakinohana H, Miyatake T. Eradication of the Melon Fly Bactrocera cucurbitae in Japan: Importance of behaviour, ecology, genetics and evolution. Ann Rev Entomol 2004; 49:331–349.CrossRefGoogle Scholar
  10. 10.
    Msangi AR et al. Current tsetse control operations in Botswana and prospects for the future. In: Tan KH, ed. Area-Wide Control of Fruit Flies and Other Insect Pests. Penang: Penerbit Universiti Sains Malaysia, 2000:57–66.Google Scholar
  11. 11.
    Vreysen MJ, Saleh KM, Ali MY et al. Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol 2000; 93:123–135.PubMedGoogle Scholar
  12. 12.
    Asman S, McDonald P, Prout T. Field studies of genetic control systems for mosquitoes. Ann Rev Entomol 1981; 26:289–343.CrossRefGoogle Scholar
  13. 13.
    Benedict M, Robinson A. The first releases of transgenic mosquitoes: An argument for the sterile insect technique. Trends Parasitol 2003; 19:349–355.PubMedCrossRefGoogle Scholar
  14. 14.
    Rendón P, McInnis D, Lance D et al. Medfly (Diptera:Tephritidae) genetic sexing: Large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J Econ Entomol 2004; 97:1547–1553.PubMedGoogle Scholar
  15. 15.
    Opiyo E, Luger D, Robinson AS. In: Tan K, ed. Proceedings: Area-wide control of fruitflies and other insect pests. Pulau Pinang, Malaysia: Penerbit Universiti Sains Malaysia, 2000:337–344, (International Conference on area-wide control of insect pests and the 5th International Symposium on fruit flies of economic importance, 28 May-5 June 1998, Penang, Malaysia).Google Scholar
  16. 16.
    Franz G, Willhoeft U, Kerremans P et al. In: IAEA, ed. Evaluation of genetically altered medflies for use in SIT programmes. Vienna: IAEA, 1997:85–95.Google Scholar
  17. 17.
    Hendrichs J, Franz G, Rendón P. Increased effectiveness and applicability of the sterile insect technique through male-only release for control of Mediterranean fruit-flies during fruiting seasons. J Appl Entomol 1995; 119:371–377.CrossRefGoogle Scholar
  18. 18.
    Robinson A. In: Robinson A, Hooper G, eds. Fruit Flies. Their Biology, Natural Enemies and Control. Vol. 3A. Amsterdam: Elsevier, 1989:57–65.Google Scholar
  19. 19.
    Robinson A. Genetic sexing strains in medfly, Ceratitis capitata, sterile insect technique programmes. Genetica 2002; 116:5–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Robinson A, Franz G, Fisher K. Genetic sexing strains in the medfly, Ceratitis capitata: Development, Mass Rearing and Field Application. Trends in Entomology 1999; 2:81–104.Google Scholar
  21. 21.
    Seawright J, Kaiser P, Dame D et al. Genetic method for the preferential elimination of females of Anopheles albimanus. Science 1978; 200:1303–1304.PubMedCrossRefGoogle Scholar
  22. 22.
    Whitten M. Automated sexing of pupae and its usefulness in control by sterile insects. J Econ Entomol 1969; 62:272–273.Google Scholar
  23. 23.
    Whitten M, Foster G. Genetical methods of pest control. Annu Rev Entomol 1975; 20:461–476.PubMedCrossRefGoogle Scholar
  24. 24.
    Franz G, Gencheva E, Kerremans P. Improved stability of genetic sex-separation strains for the Mediterranean fruit-fly, Ceratitis capitata. Genome 1994; 37:72–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Kerremans P, Franz G. Isolation and cytogenetic analyses of genetic sexing strains for the Medfly, Ceratitis capitata. Theor Appl Gen 1995; 91:255–261.CrossRefGoogle Scholar
  26. 26.
    Fisher K, Caceres C. In: Hong TK, ed. Area-wide management of fruit flies and other major insect pests. Penang, Malaysia: Universiti Sains Malaysia Press, 2000:543–550.Google Scholar
  27. 27.
    Marec F, Neven LG, Robinson AS et al. Development of genetic sexing strains in Lepidoptera: From traditional to transgenic approaches. J Econ Entomol 2005; 98:248–259.PubMedGoogle Scholar
  28. 28.
    Catteruccia F, Benton J, Crisanti A. An Anopheles transgenic sexing strain for vector control. Nature Biotechnology 2005; 23:1414–1417.PubMedCrossRefGoogle Scholar
  29. 29.
    Lukyanov KA, Fradkov AF, Gurskaya NG et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 2000; 275:25879–25882.PubMedCrossRefGoogle Scholar
  30. 30.
    Matz MV, Fradkov AF, Labas YA et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 1999; 17:969–973.PubMedCrossRefGoogle Scholar
  31. 31.
    Heinrich J, Scott M. A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Nat’l Acad Sci (USA) 2000; 97:8229–8232.CrossRefGoogle Scholar
  32. 32.
    Thomas DD, Donnelly CA, Wood RJ et al. Insect population control using a dominant, repressible, lethal genetic system. Science 2000; 287:2474–2476.PubMedCrossRefGoogle Scholar
  33. 33.
    Muñoz D, Jimenez A, Marinotti O et al. The AeAct-4 gene is expressed in the developing flight muscles of females Aedes aegypti. Insect Molecular Biology 2004; 13:563–568.PubMedCrossRefGoogle Scholar
  34. 34.
    Edwards M, Lemos F, Donelly-Doman M et al. Rapid induction by a blood meal of a carboxypeptidase gene in the gut of the mosquito Anopheles gambiae. Insect Biochem Mol Biol 1997; 27:1063–1072.PubMedCrossRefGoogle Scholar
  35. 35.
    Edwards MJ, Moskalyk LA, Donelly-Doman M et al. Characterization of a carboxypeptidase A gene from the mosquito, Aedes aegypti. Insect Molecular Biology 2000; 9:33–38.PubMedCrossRefGoogle Scholar
  36. 36.
    Alphey L, Andreasen MH. Dominant lethality and insect population control. Mol Biochem Parasitol 2002; 121:173–178.PubMedCrossRefGoogle Scholar
  37. 37.
    Schliekelman P, Gould F. Pest control by the release of insects carrying a female-killing allele on multiple loci. J Econ Entomol 2000; 93:1566–1579.PubMedGoogle Scholar
  38. 38.
    Gould F, Schliekelman P. Population genetics of autocidal control and strain replacement. Annu Rev Entomol 2004; 49:193–217.PubMedCrossRefGoogle Scholar
  39. 39.
    Maynard Smith J, Slatkin M. The stability of predator-prey systems. Ecology 1973; 54:384–391.CrossRefGoogle Scholar
  40. 40.
    Rogers D, Randolph S. From a case study to a theoretical basis for tsetse control. Insect Sci Applic 1984; 5:419–423.Google Scholar
  41. 41.
    Fryxell K, Miller T. Autocidal biological control: A general strategy for insect control based on genetic transformation with a highly conserved gene. J Econ Entomol 1995; 88:1221–1232.Google Scholar
  42. 42.
    Horn C, Wimmer E. A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotech 2003; 21:64–70.CrossRefGoogle Scholar
  43. 43.
    Schliekelman P, Gould F. Pest control by the introduction of a conditional lethal trait on multiple loci: Potential, limitations, and optimal strategies. J Econ Entomol 2000; 93:1543–1565.PubMedCrossRefGoogle Scholar
  44. 44.
    Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracyclineresponsive promoters. Proc Natl Acad Sci USA 1992; 89:5547–5551.PubMedCrossRefGoogle Scholar
  45. 45.
    Gossen M, Bujard H. Studying gene function in eukaryotes by conditional gene inactivation. Annu Rev Genet 2002; 36:153–173.PubMedCrossRefGoogle Scholar
  46. 46.
    Bello B, Resendez-Perez D, Gehring W. Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system. Development 1998; 125:2193–2202.PubMedGoogle Scholar
  47. 47.
    Lycett G, Kafatos F, Loukeris T. Conditional expression in the malaria mosquito Anopheles stephensi with Tet-on and Tet-off systems. Genetics 2004; 167:1781–1790.PubMedCrossRefGoogle Scholar
  48. 48.
    Gong P, Epton MJ, Fu G et al. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotech 2005; 23:453–456.CrossRefGoogle Scholar
  49. 49.
    Fussenegger M. The impact of mammalian gene regulation concepts on functional genomic research, metabolic engineering, and advanced gene therapies. Biotechnol Prog 2001; 17:1–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Brand A, Manoukian A, Perrimon N. Ectopic expression in Drosophila. Meth Cell Biol 1994; 44:635–654.CrossRefGoogle Scholar
  51. 51.
    Brand A, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993; 118:401–415.PubMedGoogle Scholar
  52. 52.
    Koukidou M, Klinakis A, Reboulakis C et al. Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. Insect Molecular Biology 2006; 15:95–103.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Luke Alphey
    • 1
    • 2
  • Derric Nimmo
    • 3
  • Sinead O’Connell
    • 3
  • Nina Alphey
    • 1
    • 3
  1. 1.Department of ZoologyOxford UniversityOxfordUK
  2. 2.Oxitec LimitedAbingdonUK
  3. 3.Oxitec LimitedAbingdonUK

Personalised recommendations