Alphavirus Transducing Systems

  • Brian D. Foy
  • Ken E. Olson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 627)


Alphavirus transducing systems (ATSs) are important tools for expressing genes of interest (GOI) in mosquitoes and nonvector insects. ATSs are derived from infectious cDNA clones of mosquito-borne RNA viruses (family Togaviridae). The most common ATSs in use are derived from Sindbis viruses; however, ATSs have been derived from other alphaviruses as well. ATSs generate viruses with genomes that contain GOI’s that can be expressed from additional viral subgenomic promoters. ATSs in which an exogenous gene sequence is positioned 5′ to the viral structural genes is used for stable protein expression in insects. ATSs in which a gene sequence is positioned 3′ to the structural genes is used to trigger RNAi and silence expression of that gene in the insect. ATSs are proving to be invaluable tools for understanding vector-pathogen interactions, vector competence, and other components of vector-pathogen amplification and maintenance cycles in nature. These virus-based expression systems also facilitate the researcher’s ability to decide which gene-based disease control strategies merit a further investment in time and resources in transgenic mosquitoes.


Infectious Clone Rift Valley Fever Virus Sindbis Virus Eastern Equine Encephalomyelitis Virus Infectious cDNA Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Olson KE, Higgs S, Hahn CS et al. The expression of chloramphenicol acetyltransferase in Aedes albopictus (C6/36) cells and Aedes triseriatus mosquitoes using a double subgenomic recombinant Sindbis virus. Insect Biochem Mol Biol 1994; 24(l):39–48.CrossRefPubMedGoogle Scholar
  2. 2.
    Pierro DJ, Myles KM, Foy BD et al. Development of an orally infectious Sindbis virus transducing system that efficiently disseminates and expresses green fluorescent protein in Aedes aegypti. Insect Mol Biol 2003; 12(2):107–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Foy BD, Myles KM, Pierro DJ et al. Development of a new Sindbis virus transducing system and its characterization in three Culicine mosquitoes and two Lepidopteran species. Insect Mol Biol 2004; 13(l):89–100.CrossRefPubMedGoogle Scholar
  4. 4.
    Brault AC, Foy BD, Myles KM et al. Infection patterns of o’nyong nyong virus in the malaria-transmitting mosquito, Anopheles gambiae. Insect Mol Biol 2004; 13(6):625–35.CrossRefPubMedGoogle Scholar
  5. 5.
    Vanlandingham DL, Tsetsarkin K, Hong C et al. Development and characterization of a double subgenomic chikungunya virus infectious clone to express heterologous genes in Aedes aegypti mosquitoes. Insect Biochem Mol Biol 2005; 35(10): 1162–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Keene KM, Foy BD, Sanchez-Vargas I et al. RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci USA 2004; 101(49): 17240–5.CrossRefPubMedGoogle Scholar
  7. 7.
    de Lara Capurro M, Coleman J, Beerntsen BT et al. Virus-expressed, recombinant single-chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti. Am J Trop Med Hyg 2000; 62(4):427–33.Google Scholar
  8. 8.
    Higgs S, Olson KE, Klimowski L et al. Mosquito sensitivity to a scorpion neurotoxin expressed using an infectious Sindbis virus vector. Insect Mol Biol 1995; 4(2):97–103.CrossRefPubMedGoogle Scholar
  9. 9.
    Cheng LL, Bartholomay LC, Olson KE et al. Characterization of an endogenous gene expressed in Aedes aegypti using an orally infectious recombinant Sindbis virus. J Insect Sci 2001; 1(10).Google Scholar
  10. 10.
    Kamrud KI, Olson KE, Higgs S et al. Detection of expressed chloramphenicol acetyltransferase in the saliva of Culex pipiens mosquitoes. Insect Biochem Mol Biol 1997; 27(5):423–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Olson KE. Sindbis virus expression systems in mosquitoes: Background, methods, and applications. In: Handler AM, James AA, eds. Insect Transgenesis: Methods and Applications. Boca Raton, FL: CRC Press, 2000:161–90.Google Scholar
  12. 12.
    Olson KE, Myles KM, Seabaugh RC et al. Development of a Sindbis virus expression system that efficiently expresses green fluorescent protein in midguts of Aedes aegypti following per os infection. Insect Mol Biol 2000; 9(l):57–65.CrossRefPubMedGoogle Scholar
  13. 13.
    Shiao SH, Higgs S, Adelman Z et al. Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatus. Insect Mol Biol 2001; 10(4):315–21.CrossRefPubMedGoogle Scholar
  14. 14.
    Tamang D, Tseng SM, Huang CY et al. The use of a double subgenomic Sindbis virus expression system to study mosquito gene function: Effects of antisense nucleotide number and duration of viral infection on gene silencing efficiency. Insect Mol Biol 2004; 13(6):595–602.CrossRefPubMedGoogle Scholar
  15. 15.
    Olson KE, Higgs S, Gaines PJ et al. Genetically engineered resistance to dengue-2 virus transmission in mosquitoes. Science 1996; 272(5263):884–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Higgs S, Rayner JO, Olson KE et al. Engineered resistance in Aedes aegypti to a west african and a south american strain of yellow fever virus. Am J Trop Med Hyg 1998; 58(5):663–70.PubMedGoogle Scholar
  17. 17.
    Blair CD, Adelman ZN, Olson KE. Molecular strategies for interrupting arthropod-borne virus transmission by mosquitoes. Clin Microbiol Rev 2000; 13(4):651–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Adelman ZN, Blair CD, Carlson JO et al. Sindbis virus-induced silencing of dengue viruses in mosquitoes. Insect Mol Biol 2001; 10(3):265–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Sanchez-Vargas I, Travanty EA, Keene KM et al. RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res 2004; 102(l):65–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Franz AW, Sanchez-Vargas I, Adelman ZN et al. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA 2006; 103(11):4198–203.CrossRefPubMedGoogle Scholar
  21. 21.
    Johnson BW, Olson KE, Allen-Miura T et al. Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA. Proc Natl Acad Sci USA 1999; 96(23): 13399–403.CrossRefPubMedGoogle Scholar
  22. 22.
    Raikhel AS, Kokoza VA, Zhu J et al. Molecular biology of mosquito vitellogenesis: From basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol 2002; 32(10):1275–86.CrossRefPubMedGoogle Scholar
  23. 23.
    Uhlirova M, Foy BD, Beaty BJ et al. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc Natl Acad Sci USA 2003; 100(26):15607–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Strauss JH, Strauss EG. The alphaviruses: Gene expression, replication, and evolution. Microbiol Rev 1994; 58(3):491–562.PubMedGoogle Scholar
  25. 25.
    Schlesinger S, Schlesinger MJ. Togaviridae: The viruses and their replication. In: Fields BN, Knipe DM, Howley PM, eds. Fields Virology. 3rd ed. Philadelphia: Lippincott-Raven, 1996:825–41.Google Scholar
  26. 26.
    Sawicki DL, Sawicki SG. Alphavirus positive and negative strand RNA synthesis and the role of polyproteins in formation of viral replication complexes. Arch Virol Suppl 1994; 9:393–405.PubMedGoogle Scholar
  27. 27.
    Barton DJ, Sawicki SG, Sawicki DL. Solubilization and immunoprecipitation of alphavirus replication complexes. J Virol 1991; 65(3): 1496–506.PubMedGoogle Scholar
  28. 28.
    Carleton M, Brown DT. Disulfide bridge-mediated folding of Sindbis virus glycoproteins. J Virol 1996; 70(8):5541–7.PubMedGoogle Scholar
  29. 29.
    Carleton M, Lee H, Mulvey M et al. Role of glycoprotein PE2 in formation and maturation of the Sindbis virus spike. J Virol 1997; 71(2):1558–66.PubMedGoogle Scholar
  30. 30.
    Kuhn RJ, Hong Z, Strauss JH. Mutagenesis of the 3′ nontranslated region of Sindbis virus RNA. J Virol 1990; 64(4): 1465–76.PubMedGoogle Scholar
  31. 31.
    Taniguchi T, Palmieri M, Weissmann C. QB DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature 1978; 274(5668):223–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Racaniello VR, Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 1981; 214(4523):916–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Ahlquist P, Janda M. cDNA cloning and in vitro transcription of the complete brome mosaic virus genome. Mol Cell Biol 1984; 4(12):2876–82.PubMedGoogle Scholar
  34. 34.
    Rice CM, Grakoui A, Galler R et al. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol 1989; l(3):285–96.Google Scholar
  35. 35.
    Rice CM, Levis R, Strauss JH et al. Production of infectious RNA transcripts from Sindbis virus cDNA clones: Mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J Virol 1987; 61(12):3809–19.PubMedGoogle Scholar
  36. 36.
    Kinney RM, Butrapet S, Chang GJ et al. Construction of infectious cDNA clones for dengue 2 virus: Strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology 1997; 230(2):300–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Myles KM, Pierro DJ, Olson KE. Deletions in the putative cell receptor-binding domain of Sindbis virus strain MRE16 E2 glycoprotein reduce midgut infectivity in Aedes aegypti. J Virol 2003; 77(16):8872–81.CrossRefPubMedGoogle Scholar
  38. 38.
    Hahn CS, Hahn YS, Braciale TJ et al. Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc Natl Acad Sci USA 1992; 89(7):2679–83.CrossRefPubMedGoogle Scholar
  39. 39.
    Simpson DA, Davis NL, Lin SC et al. Complete nudeotide sequence and full-length cDNA clone of S.A.AR86 a South African alphavirus related to Sindbis. Virology 1996; 222(2):464–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Davis NL, Willis LV, Smith JF et al. In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: Analysis of a viable deletion mutant. Virology 1989; 171(l):189–204.CrossRefPubMedGoogle Scholar
  41. 41.
    Kuhn RJ, Niesters HG, Hong Z et al. Infectious RNA transcripts from Ross River virus cDNA clones and the construction and characterization of defined chimeras with Sindbis virus. Virology 1991; 182(2):430–41.CrossRefPubMedGoogle Scholar
  42. 42.
    Yamaguchi Y, Shirako Y. Engineering of a Sagiyama alphavirus RNA-based transient expression vector. Microbiol Immunol 2002; 46(2): 119–29.PubMedGoogle Scholar
  43. 43.
    Liljestrom P, Lusa S, Huylebroeck D et al. In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: The small 6,000-molecular-weight membrane protein modulates virus release. J Virol 1991; 65(8):4107–13.Google Scholar
  44. 44.
    Wielgosz MM, Raju R, Huang HV. Sequence requirements for Sindbis virus subgenomic mRNA promoter function in cultured cells. J Virol 2001; 75(8):3509–19.CrossRefPubMedGoogle Scholar
  45. 45.
    Lastarza MW, Grakoui A, Rice CM. Deletion and duplication mutations in the C-terminal nonconserved region of Sindbis virus nsP3: Effects on phosphorylation and on virus replication in vertebrate and invertebrate cells. Virology 1994; 202(l):224–32.CrossRefPubMedGoogle Scholar
  46. 46.
    Lustig S, Jackson AC, Hahn CS et al. Molecular basis of Sindbis virus neurovirulence in mice. J Virol 1988; 62(7):2329–36.PubMedGoogle Scholar
  47. 47.
    Higgs S, Powers AM, Olson KE. Alphavirus expression systems: Applications to mosquito vector studies. Parasitol Today 1993; 9(12):444–52.CrossRefPubMedGoogle Scholar
  48. 48.
    Higgs S, Traul D, Davis BS et al. Green fluorescent protein expressed in living mosquitoes— without the requirement of transformation. Biotechniques 1996; 21(4):660–4.PubMedGoogle Scholar
  49. 49.
    Lewis DL, DeCamillis MA, Brunetti CR et al. Ectopic gene expression and homeotic transformations in arthropods using recombinant Sindbis viruses. Curr Biol 1999; 9(22): 1279–87.CrossRefPubMedGoogle Scholar
  50. 50.
    Raju R, Huang HV. Analysis of Sindbis virus promoter recognition in vivo, using novel vectors with two subgenomic mRNA promoters. J Virol 1991; 65(5):2501–10.PubMedGoogle Scholar
  51. 51.
    Pugachev KV, Mason PW, Shope RE et al. Double-subgenomic Sindbis virus recombinants expressing immunogenic proteins of Japanese encephalitis virus induce significant protection in mice against lethal JEV infection. Virology 1995; 212(2):587–94.CrossRefPubMedGoogle Scholar
  52. 52.
    Seabaugh RC, Olson KE, Higgs S et al. Development of a chimeric sindbis virus with enhanced per Os infection of Aedes aegypti. Virology 1998; 243(1):99–112.CrossRefPubMedGoogle Scholar
  53. 53.
    Myles KM, Pierro DJ, Olson KE. Comparison of the transmission potential of two genetically distinct Sindbis viruses after oral infection of Aedes aegypti (Diptera: Culicidae). J Med Entomol 2004; 41(l):95–106.PubMedGoogle Scholar
  54. 54.
    Lanciotti RS, Ludwig ML, Rwaguma EB et al. Emergence of epidemic O’nyong-nyong fever in Uganda after a 35-year absence: Genetic characterization of the virus. Virology 1998; 252(l):258–68.CrossRefPubMedGoogle Scholar
  55. 55.
    Rwaguma EB, Lutwama JJ, Sempala SD et al. Emergence of epidemic O’nyong-nyong fever in southwestern Uganda, after an absence of 35 years. Emerg Infect Dis 1997; 3(1):77.PubMedCrossRefGoogle Scholar
  56. 56.
    Scott TW, Burrage TG. Rapid infection of salivary glands in Culiseta melanura with eastern equine encephalitis virus: An electron microscopic study. Am J Trop Med Hyg 1984; 33(5):961–4.PubMedGoogle Scholar
  57. 57.
    Scott TW, Hildreth SW, Beaty BJ. The distribution and development of eastern equine encephalitis virus in its enzootic mosquito vector, Culiseta melanura. Am J Trop Med Hyg 1984; 33(2):300–10.PubMedGoogle Scholar
  58. 58.
    Bowers DF, Abell BA, Brown DT. Replication and tissue tropism of the alphavirus Sindbis in the mosquito Aedes albopictus. Virology 1995; 212(1): 1–12.CrossRefPubMedGoogle Scholar
  59. 59.
    Weaver SC, Lorenz LH, Scott TW. Distribution of western equine encephalomyelitis virus in the alimentary tract of Culex tarsalis (Diptera: Culicidae) following natural and artificial blood meals. J Med Entomol 1993; 30(2):391–7.PubMedGoogle Scholar
  60. 60.
    Weaver SC, Scherer WF, Cupp EW et al. Barriers to dissemination of Venezuelan encephalitis viruses in the Middle American enzootic vector mosquito, Culex (Melanoconion) taeniopus. Am J Trop Med Hyg 1984; 33(5):953–60.PubMedGoogle Scholar
  61. 61.
    Weaver SC, Scott TW, Lorenz LH. Patterns of eastern equine encephalomyelitis virus infection in Culiseta melanura (Diptera: Culicidae). J Med Entomol 1990; 27(5):878–91.PubMedGoogle Scholar
  62. 62.
    Weaver SC, Scott TW, Lorenz LH et al. Togavirus-associated pathologic changes in the midgut of a natural mosquito vector. J Virol 1988; 62(6):2083–90.PubMedGoogle Scholar
  63. 63.
    Weaver SC, Scott TW, Lorenz LH et al. Detection of eastern equine encephalomyelitis virus deposition in Culiseta melanura following ingestion of radiolabeled virus in blood meals. Am J Trop Med Hyg 1991; 44(3):250–9.PubMedGoogle Scholar
  64. 64.
    Vanlandingham DL, Hong C, Klingler K et al. Differential infectivities of o’nyong-nyong and chikungunya virus isolates in Anopheles gambiae and Aedes aegypti mosquitoes. Am J Trop Med Hyg 2005; 72(5):616–21.PubMedGoogle Scholar
  65. 65.
    Hardy JL. Susceptibility and resistance of vector mosquitoes. In: Monath TP, ed. The Arboviruses: Ecology and Epidemiology. Boca Raton, FL: CRC Press, 1988:87.Google Scholar
  66. 66.
    Weaver SC. Vector biology in virus pathogenesis. In: Nathanson, ed. Viral Pathogenesis. New York: Raven Press, 1996.Google Scholar
  67. 67.
    Chamberlain RW. Epidemiology of arthropod-borne togaviruses: The role of arthropods as hosts and vectors and of vertebrate hosts in natural transmission cycles. In: Schlesinger RW, ed. The Togaviruses: Biology, Structure, Replication. New York: Academic Press Inc., 1980:175.Google Scholar
  68. 68.
    Woodring JI, Higgs S, Beaty BJ. Natural cycles of vector-borne pathogens. In: Beaty BJ, Marquardt WC, eds. The Biology of Disease Vectors. Niwot, CO: University of Colorado Press, 1996:51.Google Scholar
  69. 69.
    Hardy JL, Houk EJ, Kramer LD et al. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 1983; 28:229–62.CrossRefPubMedGoogle Scholar
  70. 70.
    Reinhardt C, Hecker H. Structure and function of the basal lamina and of the cell junctions in the midgut epithelium (stomach) of female Aedes aegypti L.(Insecta, Diptera). Acta Trop 1973; 30(4):213–36.PubMedGoogle Scholar
  71. 71.
    Houk EJ, Chiles RE, Hardy JL. Unique midgut lamina in the mosquito, Aedes dorsalis (Meigan) (Insecta:Diptera). Int J Insect Morphol Embryol 1980; 9:161.CrossRefGoogle Scholar
  72. 72.
    Houk EJ, Hardy JL, Chiles RE. Permeability of the midgut basal lamina in the mosquito Culex tarsalis Coquillett (Insecta, Diptera). Acta Tropica 1981; 38:163–171.PubMedGoogle Scholar
  73. 73.
    Paredes AM, Simon MN, Brown DT. The mass of the Sindbis virus nudeocapsid suggests it has T = 4 icosahedral symmetry. Virology 1992; 187(1):329–32.CrossRefPubMedGoogle Scholar
  74. 74.
    Lerdthusnee K, Romoser WS, Faran ME et al. Rift Valley fever virus in the cardia of Culex pipiens: An immunocytochemical and ultrastructural study. Am J Trop Med Hyg 1995; 53(4):331–7.PubMedGoogle Scholar
  75. 75.
    Romoser WS, Faran ME, Bailey CL. Newly recognized route of arbovirus dissemination from the mosquito (Diptera: Culicidae) midgut. J Med Entomol 1987; 24(4): 431–2.PubMedGoogle Scholar
  76. 76.
    Romoser WS, Faran ME, Bailey CL et al. An immunocytochemical study of the distribution of Rift Valley fever virus in the mosquito Culex pipiens. Am J Trop Med Hyg 1992; 46(4):489–501.PubMedGoogle Scholar
  77. 77.
    Scott TW, Lorenz LH. Reduction of Culiseta melanura fitness by eastern equine encephalomyelitis virus. Am J Trop Med Hyg 1998; 59(2):341–6.PubMedGoogle Scholar
  78. 78.
    Girard YA, Popov V, Wen J et al. Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol 2005; 42(3):429–44.CrossRefPubMedGoogle Scholar
  79. 79.
    Whitfield SG, Murphy FA, Sudia WD. St. Louis encephalitis virus: An ultrastructural study of infection in a mosquito vector. Virology 1973; 56(l):70–87.CrossRefPubMedGoogle Scholar
  80. 80.
    Murphy FA. Cellular resistance to arbovirus infection. Ann NY Acad Sci 1975; 266:197–203.CrossRefPubMedGoogle Scholar
  81. 81.
    Galiana-Arnoux D, Dostert C, Schneemann A et al. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 2006.Google Scholar
  82. 82.
    Wang XH, Aliyari R, Li WX et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 2006; 312(5772):452–4.CrossRefPubMedGoogle Scholar
  83. 83.
    Coates CJ, Jasinskiene N, Miyashiro L et al. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 1998; 95(7):3748–51.CrossRefPubMedGoogle Scholar
  84. 84.
    Jasinskiene N, Coates CJ, Benedict MQ et al. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci USA 1998; 95(7):3743–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Kokoza V, Ahmed A, Wimmer EA et al. Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP arm]. Insect Biochem Mol Biol 2001; 31(12):1137–43.CrossRefPubMedGoogle Scholar
  86. 86.
    Catteruccia F, Nolan T, Blass C et al. Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proc Natl Acad Sci USA 2000; 97(5):2157–62.CrossRefPubMedGoogle Scholar
  87. 87.
    Grossman GL, Rafferty CS, Clayton JR et al. Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol 2001; 10(6):597–604.CrossRefPubMedGoogle Scholar
  88. 88.
    Ngo H, Tschudi C, Gull K et al. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA 1998; 95(25): 14687–92.CrossRefPubMedGoogle Scholar
  89. 89.
    Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669):806–11.CrossRefPubMedGoogle Scholar
  90. 90.
    Fire A. RNA-triggered gene silencing. Trends Genet 1999; 15(9):358–63.CrossRefPubMedGoogle Scholar
  91. 91.
    Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 1998; 95(7):1017–26.CrossRefPubMedGoogle Scholar
  92. 92.
    Kavi HH, Fernandez HR, Xie W et al. RNA silencing in Drosophila. FEBS Lett 2005; 579(26):5940–9.CrossRefPubMedGoogle Scholar
  93. 93.
    Kennerdell JR, Carthew RW. Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 2000; 18(8):896–8.CrossRefPubMedGoogle Scholar
  94. 94.
    Blandin S, Moita LF, Kocher T et al. Reverse genetics in the mosquito Anopheles gambiae: Targeted disruption of the Defensin gene. EMBO Rep 2002; 3(9):852–6.CrossRefPubMedGoogle Scholar
  95. 95.
    Osta MA, Christophides GK, Kafatos FC. Effects of mosquito genes on Plasmodium development. Science 2004; 303(5666):2030–2.CrossRefPubMedGoogle Scholar
  96. 96.
    Powers AM, Olson KE, Higgs S et al. Intracellular immunization of mosquito cells to LaCrosse virus using a recombinant Sindbis virus vector. Virus Res 1994; 32(l):57–67.CrossRefPubMedGoogle Scholar
  97. 97.
    Powers AM, Kamrud KI, Olson KE et al. Molecularly engineered resistance to California serogroup virus replication in mosquito cells and mosquitoes. Proc Natl Acad Sci USA 1996; 93(9):4187–91.CrossRefPubMedGoogle Scholar
  98. 98.
    Attardo GM, Higgs S, Klingler KA et al. RNA interference-mediated knockdown of a GATA factor reveals a link to anautogeny in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 2003; 100(23):13374–9.CrossRefPubMedGoogle Scholar
  99. 99.
    Ruiz MT, Voinnet O, Baulcombe DC. Initiation and maintenance of virus-induced gene silencing. Plant Cell 1998; 10(6):937–46.CrossRefPubMedGoogle Scholar
  100. 100.
    Powers AM, Olson KE. Working safely with recombinant viruses and vectors. In: Richmond JY, ed. Anthology of Biosafety: VI. Arthropod Borne Diseases. Mundelein, IL: American Biological Safety Association, 2003:39–52.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Arthropod-borne and Infectious Diseases Laboratory Department of Microbiology Immunology and PathologyColorado State UniversityFort CollinsUSA

Personalised recommendations