Applications of Mosquito Ecology for Successful Insect Transgenesis-Based Disease Prevention Programs

  • Thomas W. Scott
  • Laura C. Harrington
  • Bart G. J. Knols
  • Willem Takken
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 627)


Successful application of genetically modified mosquitoes (GMMs) for disease prevention requires close collaboration among scientists with a diverse spectrum of expertise. Perspectives ranging from theoretical to empirical-within the context of appropriate ethical, social, and cultural guidelines-will provide the essential insights that shape informed evaluation and implementation of GMMs by vector-borne disease specialists, public health officials, and policy makers. Ecologists and population biologists have key roles to play in this process.


Malaria Vector Anopheles Gambiae Accessory Gland Chromosomal Form Gonotrophic Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scott TW, Takken W, Knols BGJ et al. The ecology of genetically modified mosquitoes. Science 2002; 298:117–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Takken W, Scott TW. Ecological aspects for application of genetically modified mosquitoes. Springer Dordrecht: Frontis, 2003.Google Scholar
  3. 3.
    Gould F, Schliekelman P. Population genetics of autocidal control and strain replacement. Ann Rev Entomol 2004; 49:193–217.CrossRefGoogle Scholar
  4. 4.
    Knols BGJ, Louis C. Strategic plan to bridge laboratory and field research in disease vector control. Springer Dordrecht: Frontis, 2006.Google Scholar
  5. 5.
    Scott TW. Current thoughts about the integration of field and laboratory sciences in genetic control of disease vectors. In: Knols BGJ, Louis C, eds. Strategic Plan to Bridge Laboratory and Field Research in Disease Vector Control. Springer Dordrecht: Frontis, 2005:67–76.Google Scholar
  6. 6.
    Mukabana RW, Kannady K, Kiama GM et al. Ecologists can enable communities to implement malaria vector control in Africa. Malar J 2006; 5:9.PubMedCrossRefGoogle Scholar
  7. 7.
    Reisen W. Lessons from the past: Historical studies by the University of Maryland and the University of California, Berkeley. In: Takken W, Scott TW, eds. Ecological Aspects for Application of Genetically Modified Mosquitoes. Springer Dordrecht: Frontis, 2003:25–32.Google Scholar
  8. 8.
    Ferguson HM, John B, Ng’habi K et al. Redressing the sex imbalance in knowledge of vector biology. Trends Ecol Evol 2005; 20:202–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Thornhill RA, Alcock J. Insect Mating Systems. Cambridge: Harvard University Press, 1983.Google Scholar
  10. 10.
    Partridge L. Lifetime reproductive success in Drosophila. In: TH CB, ed. Reproductive Success. Chicago: University of Chicago Press, 1988:11–23.Google Scholar
  11. 11.
    Clements AN. The biology of mosquitoes; sensory reception and behaviour. 1999.Google Scholar
  12. 12.
    Knols BGJ, Ng’habi K, Mathenge EM et al. MalariaSphere: A greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Malar J 2002; 1:19.PubMedCrossRefGoogle Scholar
  13. 13.
    Knols BGJ, Nijru BN, Mukabana RW et al. Contained semi-field environments for ecological studies on transgenic African malaria vectors: Benefits and constraints. In: Scott TW, ed. Ecological Aspects for Application of Genetically Modified Mosquitoes. Springer Dordrecht: Frontis, 2003:91–106.Google Scholar
  14. 14.
    Dyck VA, Hendrichs J, Robinson AS. Sterile insect technique: Principles and practices in area-wide pest management. New York: Springer, 2005.Google Scholar
  15. 15.
    Takken W, Costantini C, Dolo G et al. Bringing laboratory and field research for genetic control of disease vectors: Springer/wageningen UR frontis series, 2006.Google Scholar
  16. 16.
    White GB. Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg 1974; 68:278–301.PubMedCrossRefGoogle Scholar
  17. 17.
    Coetzee M, Craig M, le Sueur D. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today 2000; 16:74–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Girod R, Salvan M, Simard F et al. Evaluation of the vectorial capacity of Anopheles arabiensis (Diptera: Culicidae) on the island of Reunion: An approach to the health risk of malaria importation in an area of eradication. Bull Soc Pathol Exot 1999; 92:203–9.PubMedGoogle Scholar
  19. 19.
    Chevillon C, Paul RE, Meeus Td et al. Thinking transgenic vectors in a population context: Some expectations and many open questions. In: Boete C, ed. Genetically Modified Mosquitoes for Malaria Control. Georgetown: Landes Bioscience, 2006:117–31.Google Scholar
  20. 20.
    Fontenille D, Lochouarn L, Diagne N et al. High annual and seasonal variations in malaria transmissions by anopheline and vector species composition in Dielmo, a holoendemic area in Senegal. Am J Trop Med Hyg 1997; 56:247–53.PubMedGoogle Scholar
  21. 21.
    Charlwood JD, Kihonda J, Sama S et al. The rise and fall of Anopheles arabiensis (Diptera: Culicidae) in a Tanzanian village. Bull Entomol Res 1995; 85:37–44.Google Scholar
  22. 22.
    Favia G, Delia Torre A, Bagayoko M et al. Molecular identification of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Mol Biol 1997; 6:377–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Delia Torre A, Fanello C, Akogbeto M et al. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol 2001; 10:9–18.CrossRefGoogle Scholar
  24. 24.
    Favia G, Lanfrancotti A, Spanos L et al. Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol Biol 2001; 10:19–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Delia Torre A, Costantini C, Besansky NJ et al. Speciation within Anopheles gambiaethe glass is half full. Science 2002; 298:115–7.CrossRefGoogle Scholar
  26. 26.
    Slotman MA, Mendez MM, Delia Torre A et al. Genetic differentiation between the Bamako and Savanna chromosomal forms of Anopheles gambiae as indicated by amplified fragment length polymorphism analysis. Am J Trop Med Hyg 2006; 74:641–8.PubMedGoogle Scholar
  27. 27.
    Tripet F, Wright J, Cornel AJ et al. Longitudinal survey of knockdown resistance to pyrethroid (kdr) in Mali, West Africa, and the evidence of its emergence in the Bamako form of Anopheles gambiae s.s. Am J Trop Med Hyg 2007; 76:81–7.PubMedGoogle Scholar
  28. 28.
    Yuval B. Mating systems of blood-feeding flies. Ann Rev Entomol 2006; 51:413–40.CrossRefGoogle Scholar
  29. 29.
    Downes JA. The swarming and mating flight of Diptera. Ann Rev Entomol 1969; 14:271–98.CrossRefGoogle Scholar
  30. 30.
    Takken W, Knols BGJ. Odor-mediated behavior of Afrotropical malaria mosquitoes. Ann Rev Entomol 1999; 44:131–57.CrossRefGoogle Scholar
  31. 31.
    Sullivan RT. Insect swarming and mating. Florida Entomologist 1981; 64:44–65.CrossRefGoogle Scholar
  32. 32.
    Cooter RJ. Swarm flight behaviour in flies and locusts. In: Goldsworthy GJ, Wheeler CH, eds. Insect Flight. Boca Raton: CRC Press, 1989:165–203.Google Scholar
  33. 33.
    Shuster SM, Wade MJ. Mating systems and mating strategies. Monographs in Behavior and Ecology. Princeton: Princeton University Press, 2003:533.Google Scholar
  34. 34.
    Marchand RP. Field observations on swarming and mating in Anopheles gambiae mosquitoes in Tanzania. Neth J Zool 1984; 34:367–87.CrossRefGoogle Scholar
  35. 35.
    Charlwood JD, Jones MDR. Mating behaviour in the mosquito Anopheles gambiae II swarming behaviour. Physiol Entomol 1980; 5:315–20.CrossRefGoogle Scholar
  36. 36.
    Charlwood JD, Pinto J, Sousa CA et al. The swarming and mating behaviour of Anopheles gambiae (Diptera: Culicidae) from Sao Tome Island. J Vector Ecol 2002a; 27:178–83.PubMedGoogle Scholar
  37. 37.
    Yuval B, Bouskila A. Temporal dynamics of mating and predation in mosquito swarms. Oecologia 1993; 95:65–9.Google Scholar
  38. 38.
    Charlwood JD, Thompson R, Madsen H. Observations on the swarming and mating behaviour of Anopheles funestus from southern Mozambique. Malar J 2003; 2:2.PubMedCrossRefGoogle Scholar
  39. 39.
    Yuval B, Wekesa JW, Washino RK. Effects of body size on swarming behavior and mating success of male Anopheles freeborni (Diptera: Culicidae). J Insect Behavior 1993; 6:333–42.CrossRefGoogle Scholar
  40. 40.
    Verhoek B, Takken W. Age effects on insemination rate of Anopheles gambiae s.l. in the laboratory. Entomol Exp Appl 1994; 72:167–72.CrossRefGoogle Scholar
  41. 41.
    Mahmood F, Reisen WK. Anopheles stephensi (Diptera: Culicidae): Changes in male mating competence and reproductive system morphology associated with aging and mating. J Med Entomol 1982; 19(5):573–88.PubMedGoogle Scholar
  42. 42.
    Mahmood F, Reisen WK. Anopheles culicifacies: Effects of age on the male reproductive system and mating ability of virgin adult mosquitoes. Med Vet Entomol 1994; 8:31–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Huho BJ, Ng’habi KR, Killeen GF et al. A reliable morphological method to assess the age of male Anopheles gambiae. Malar J 2006; 5:62.PubMedCrossRefGoogle Scholar
  44. 44.
    Briegel H. Physiological bases of mosquito ecology. J Vector Ecol 2003; 28:1–11.PubMedGoogle Scholar
  45. 45.
    Fernandes L, Briegel H. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J Vector Ecol 2005; 30:11–26.PubMedGoogle Scholar
  46. 46.
    Yuval B, Holliday-Hanson ML, Washino RK. Energy budget of swarming male mosquitoes. Ecol Entomol 1994; 19:74–8.CrossRefGoogle Scholar
  47. 47.
    Foster WA. Mosquito sugar feeding and reproductive energetics. Ann Rev Entomol 1995; 40:443–74.CrossRefGoogle Scholar
  48. 48.
    Impoinvil DE, Kongere JO, Foster WA et al. Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenya. Med Vet Entomol 2004; 18:108–15.PubMedCrossRefGoogle Scholar
  49. 49.
    Gary RE, Foster WA. Anopheles gambiae feeding and survival on honeydew and extra-floral nectar of peridomestic plants. Med Vet Entomol 2004; 18:102–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Gary RE, Foster WA. Diel timing and frequency of sugar feeding in the mosquito Anopheles gambiae, depending on sex, gonotrophic state and resource availability. Med Vet Entomol 2006; 20:308–16.PubMedCrossRefGoogle Scholar
  51. 51.
    Yuval B, Fritz GN. Multiple mating in female mosquitoes—evidence from a field population of Anopheles freeborni (Diptera: Culicidae). Bull Entomol Res 1994; 84:137–49.Google Scholar
  52. 52.
    Huho BJ, Ng’habi KR, Killeen GF et al. Nature beats nurture: A case study of the physiological fitness of free-living and laboratory-reared male Anopheles gambiae s.l. J Exp Biol 2007; 210:2939–2947.PubMedCrossRefGoogle Scholar
  53. 53.
    Giglioli MEC, Mason GF. The mating plug in anopheline mosquitoes. Proc R Ent Soc Lond Dordrecht: 1966; A41(7–9): 123–9.Google Scholar
  54. 54.
    Novikov YM. Monogamy of Anopheles messeae under natural conditions. Zool Zh 1981; 60:214–20.Google Scholar
  55. 55.
    Baimai V, Green CA. Monandry (monogamy) in natural populations of anopheline mosquitoes. J Am Mosq Contr Assoc 1987; 3(3):481–4.Google Scholar
  56. 56.
    Scarpassa VM, Tadei WP, Kerr WE. Biology of Amazonian anopheline mosquitoes. XVI. Evidence of multiple insemination (polyandry) in Anopheles nuneztovari Gabaldon, 1940 (Diptera: Culicidae). Rev Brasil Genet 1992; 15:51–64.Google Scholar
  57. 57.
    Tripet F, Toure Y, Dolo G et al. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg 2003; 68:1–5.PubMedGoogle Scholar
  58. 58.
    Hartberg WK. Observations on the mating behaviour of Aedes aegypti in nature. Bull World Health Organ 1971; 45:847–50.PubMedGoogle Scholar
  59. 59.
    Gubler DJ, Bhattacharya NC. Swarming and mating of Aedes albopictus subgenus Stegomyia in nature. Mosq News 1972; 32:219–23.Google Scholar
  60. 60.
    Norris DE, Shurtleff AC, Toure YT et al. Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae s.s. (Diptera: Culicidae). J Med Entomol 2001; 38:336–40.PubMedGoogle Scholar
  61. 61.
    Fagerberg AJ, Fulton RE, Black WC. Microsatellite loci are not abundant in all arthropod genomes: Analyses in the hard tick, Ixodes scapularis, and the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 2001; 10:225–36.PubMedCrossRefGoogle Scholar
  62. 62.
    Huber K, Loan LL, Hoang TH et al. Genetic differentiation of the dengue vector, Aedes aegypti (Ho Chi Minh City, Vietnam) using microsatellite markers. Mol Ecol 2002; 11:1629–35.PubMedCrossRefGoogle Scholar
  63. 63.
    Craig G. Mosquitoes: Female monogamy induced by male accessory gland substance. Science 1967; 156:1499–500.PubMedCrossRefGoogle Scholar
  64. 64.
    Spielman A, Leahy MG, Skaff V. Seminal loss in repeatedly mated female Aedes aegypti. Biol Bull 1967; 132:404–12.CrossRefGoogle Scholar
  65. 65.
    Gwadz RW, Craig GG. Female polygamy due to inadequate semen transfer in Aedes aegypti. Mosq News 1970; 30:355–60.Google Scholar
  66. 66.
    Christophers SR. Aedes aegypti (L.), the yellow fever mosquito: Its life history, bionomics and structure. Cambridge: Cambridge University Press, 1960.Google Scholar
  67. 67.
    Young ADM, Downe AER. Renewal of sexual receptivity in mated female mosquitoes, Aedes aegypti. Physiol Entomol 1982; 7:467–71.CrossRefGoogle Scholar
  68. 68.
    Williams RW, Berger A. The relation of female polygamy to gonotrophic activity in the ROCK stain of Aedes aegypti. Mosq News 1980; 40:597–604.Google Scholar
  69. 69.
    Wolfner MF. Tokens of love: Functions and regulation of Drosophila male accessory gland products. Insect Biochem Mol Biol 1997; 27:179–92.PubMedCrossRefGoogle Scholar
  70. 70.
    Wolfner MF. The gifts that keep on giving: Physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 2002; 88:85–93.PubMedCrossRefGoogle Scholar
  71. 71.
    Chapman T, Bangham J, Vinti G et al. The sex peptide of Drosophila melanogaster: Female post-mating responses analyzed by using RNA interference. Proc Natl Acad sci USA 2003; 100:9923–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Kubli E. Sex-peptides: Seminal peptides of the Drosophila male. Cell Mol Life Sci 2003; 60:1689–704.PubMedCrossRefGoogle Scholar
  73. 73.
    Foster WA, Lea AO. Renewable fecundity of male Aedes aegypti following replenishment of seminal vesicles and accessory glands. J Insect Physiol 1975; 21:1085–90.PubMedCrossRefGoogle Scholar
  74. 74.
    Youngson JHAM, Welch HM, Wood RJ. Meitotic drive and the D(MD) locus and fertility in the mosquito, Aedes aegypti (L). Genetica 1981; 54:335–40.CrossRefGoogle Scholar
  75. 75.
    Ponlawat A, Harrington L. Age and body size influence male sperm capacity of the Dengue vector Aedes aegypti (Diptera: Culicidae). J Med Entomol 2007; 44(3):422–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Benjamin SN, Bradshaw WE. Body size and flight activity effects on male reproductive success in the pitcher plant mosquito (Diptera: Culicidae). Ann Entomol Soc Am 1994; 87(3):331–6.Google Scholar
  77. 77.
    Dickinson JM, Klowden MJ. Reduced transfer of male accessory gland proteins and monandary in female Aedes aegypti mosquitoes. J Vector Ecol 1997; 22:95–8.PubMedGoogle Scholar
  78. 78.
    Simmons LW. Male size, mating potential, and lifetime reproductive success in the field cricket Gryllus bimaculatus. Animal Behavior 1988; 36:372–9.CrossRefGoogle Scholar
  79. 79.
    Goldsmith SK, Alcock J. The mating chances of small males of the cerambycid beetle Trachyderes mandibularis differ in different environments (Coleoptera, Cerambycidae). J Insect Behavior 1993; 6:351–60.CrossRefGoogle Scholar
  80. 80.
    Vend FV, Carlson AD. Proximate mechanisms of sexual selection in the firefly Photinus pyralis (Coleoptera: Lampyridae). J Insect Behavior 1998; 11:191–207.CrossRefGoogle Scholar
  81. 81.
    Simmons LW, Stockley P, Jackson RL et al. Sperm competition or sperm selection: No evidence for female influence over paternity in yellow dung flies Scatophaga stecoraria. Behavioral Ecol Sociobio 1996; 38:199–206.CrossRefGoogle Scholar
  82. 82.
    Simmons LW, Parker GA. Individual variation in sperm competition success in the field cricket Gryllus bimaculatus. Animal Behavior 1992; 34:1463–70.CrossRefGoogle Scholar
  83. 83.
    Parker GA, Simmons L. Evolution of phenotypica optima and copula duration in dungflies. Nature 1994; 370:53–6.CrossRefGoogle Scholar
  84. 84.
    Bangham J, Chapman T, Partridge L. Effects of body size, accessory gland, and testis size on pre-and postcopulatory success in Drosophila melanogaster. Animal Behavior 2002; 64:915–21.CrossRefGoogle Scholar
  85. 85.
    Bradshaw WE, Holzapfel CM. Reproductive consequences of density-dependent size variation in the pitcher plant mosquito, Wyeomyia smithii (Diptera, Culicidae). Ann Entomol Soc Am 1992; 85:274–81.Google Scholar
  86. 86.
    Bradshaw WE, Holzapfel CM. Genetic constraints to life history evolution in the pitcher-plant mosquito Wyeomyia smithii. Evolution 1996; 50:1176–81.CrossRefGoogle Scholar
  87. 87.
    Okanda FM, Dao A, Njiru BN et al. Behavioural determinants of gene flow in malaria vector populations: Anopheles gambiae males select large females as mates. Malar J 2002; 1:10.PubMedCrossRefGoogle Scholar
  88. 88.
    Klowden MJ, Chambers GM. Male accessory gland substances activate egg development in nutritionally stressed Ae. aegypti mosquitoes. J Insect Physiol 1991; 37:721–6.CrossRefGoogle Scholar
  89. 89.
    Kalb J, di Benedetto AJ, Wolfner MF. Probing the function of Drosophila melanogaster accessory glands by directed cell ablation. Proc Natl Acad Sci 1993; 92:10114–8.Google Scholar
  90. 90.
    Xue L, Noll M. Drosophila female sexual behavior induced by sterile males showing copulation complementation. Proc Nat Acad Sci 2000; 97:3272–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Taylor B, Jones MDR. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L): The phase-setting effects of light on and light off. J Exp Biol 1969; 51:59–70.PubMedGoogle Scholar
  92. 92.
    Jones MDR, Gubbins SJ. Changes in the circadian flight activity of the mosquito Anopheles gambiae in relation to insemination, feeding, and oviposition. Physiol Entomol 1978; 7:281–89.CrossRefGoogle Scholar
  93. 93.
    Jones MDR, Gubbins SJ. Modification of female circadian flight-activity by a male accessory gland pheromone in the mosquito Culex pipiens quinquefasciatus. Physiol Entomol 1979; 4:345–51.CrossRefGoogle Scholar
  94. 94.
    Jones MDR. The programming of circadian flight activity in relation to mating and gonotrophic cycle in the mosquito, Aedes aegypti. Physiol Entomol 1981; 6:307–13.CrossRefGoogle Scholar
  95. 95.
    Chiba Y, Shinkawa Y, Yamamoto Y. A comparative study on insemination dependency of circadian activity pattern in mosquitoes. Physiol Entomol 1992; 17:213–8.CrossRefGoogle Scholar
  96. 96.
    Chiba Y, Yamamoto Y, Shimizu C. Insemination-dependent modification of circadian activity of the mosquito Culex pipiens pallens. Zool Sci 1990; 7:895–906.Google Scholar
  97. 97.
    Lavoipierre MMJ. Biting behavior of mated and unmated females of an African strain of Aedes aegypti. Nature 1958; 181:1781–2.PubMedCrossRefGoogle Scholar
  98. 98.
    Judson CL. Feeding and oviposition behavior in the mosquito Aedes aegypti (L.) I. Preliminary studies of physiological control mechanisms. Biol Bull 1967; 133:369–77.PubMedCrossRefGoogle Scholar
  99. 99.
    Klowden MJ, Lea AO. Humoral inhibition of host seeking in Aedes aegypti during oocyte maturation. J Insect Physiol 1979; 24:231–5.CrossRefGoogle Scholar
  100. 100.
    Gillett JD. Variation in the hatching-responses of Aedes eggs (Diptera: Culicidae). Bull Entomol Res 1955; 46:241–54.Google Scholar
  101. 101.
    Leahy MG, Craig GG. Accessory gland substance as a stimulant for oviposition in Aedes aegypti and Ae. albopictus. Mosq News 1965; 25:448–52.Google Scholar
  102. 102.
    Hiss EA, Fuchs M. The effect of matrone on oviposition in the mosquito, Aedes aegypti. J Insect Physiol 1972; 18:2217–27.PubMedCrossRefGoogle Scholar
  103. 103.
    Ramalingam S, Craig GG. Functions of the male accessory gland secretions of Aedes mosquitoes (Diptera: Culicidae): Transplantation studies. Can Entomol 1976; 108:995–60.Google Scholar
  104. 104.
    Freyvogel T, Hunter R, Smith E. Nonspecific esterases in mosquitoes. J Histochem 1968; 16:765–90.Google Scholar
  105. 105.
    Klowden MJ, Chambers GM. Ovarian development and adult mortality in Aedes aegypti treated with sucrose, juvenile hormone, and methoprene. J Insect Physiol 1989; 35:513–7.CrossRefGoogle Scholar
  106. 106.
    Klowden MJ, Chambers GM. Reproductive and metabolic differences between Ae. aegypti and Ae. albopictus (Diptera: Culicidae). J Med Entomol 1992; 29:467–71.PubMedGoogle Scholar
  107. 107.
    Klowden MJ. Mating and nutritional state affect the reproduction of Aedes albopictus mosquitoes. J Am Mosq Contr Assoc 1993; 9:169–73.Google Scholar
  108. 108.
    Edman JD. Rate of digestion of three human blood fractions in Aedes aegypti (Diptera: Culicidae). Ann Entomol Soc Am 1970; 63:1778–9.Google Scholar
  109. 109.
    Downe AER. Internal regulation of rate of digestion of blood meals in the mosquito, Aedes aegypti. J Insect Physiol 1975; 21:1835–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Klowden MJ. The check is in the male: Male mosquitoes affect female physiology and behavior. J Am Mosq Contr Assoc 1999; 15(2):213–20.Google Scholar
  111. 111.
    Fuchs MS, Craig GB, Despommier DD. The protein nature of the substance inducing female monogamy in Aedes aegypti. J Insect Physiol 1969; 15:701–9.CrossRefGoogle Scholar
  112. 112.
    Fuchs MS, Craig GB, Hiss EA. The biochemical basis of female monogamy in mosquitoes. I. Extraction of the active principles from Aedes aegypti. Life Sci 1968; 7:835–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Fuchs MS, Hiss EA. The partial purification and separation of the protein components of matrone from Aedes aegypti. J Insect Physiol 1970; 16:931–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Fowler K, Partridge L. A cost of mating in female fruitflies. Nature 1989; 338:760–1.CrossRefGoogle Scholar
  115. 115.
    Partridge L, Ewing A, Chandler A. Male size and mating success in Drosophila melanogaster: The roles of male and female behaviour. Animal Behavior 1987; 35:555–62.CrossRefGoogle Scholar
  116. 116.
    Partridge L, Fowler K. Non-mating costs of exposure to males in female Drosophila melanogaster. J Insect Physiol 1990; 36:419–25.CrossRefGoogle Scholar
  117. 117.
    Chapman T, Liddle L, Kalb JM et al. Male seminal fluid components cause the cost of mating in Drosophila melanogaster females. Nature 1995; 373:241–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Marrelli M, Li C, Rasgon JL et al. Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood. Proc Natl Acad Sci 2007; 104:5580–3.PubMedCrossRefGoogle Scholar
  119. 119.
    James AA. Gene drive systems in mosquitoes: Rules of the road. Trends Parasitol 2005; 21:64–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Beatty J. Fitness: Theoretical contexts. In: Keller EF, Lloyd EA, eds. Keywords in Evolutionary Biology. Cambridge: Harvard University Press, 1992:115–9.Google Scholar
  121. 121.
    Paul D. Fitness: Historical perspective. In: Keller EF, Lloyd EA, eds. Keywords in Evolutionary Biology. Cambridge: Harvard University Press, 1992:112–4.Google Scholar
  122. 122.
    Munstermann LE. Unexpected genetic consequences of colonization and inbreeding: Allozyme tracking in Culicidae (Diptera). Ann Entomol Soc Am 1994; 87:157–64.Google Scholar
  123. 123.
    Mukhopadhyay J, Rangel EF, Ghosh K et al. Patterns of genetic variability in colonized strains of Lutzomyia longipalpis (Diptera: Psychodidae) and its consequences. Amer J Trop Med Hyg 1997; 57:216–21.Google Scholar
  124. 124.
    Tabachnick WJ. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector-borne diseases. J Med Entomol 2003; 40:597–606.PubMedGoogle Scholar
  125. 125.
    Hard DL, Clark AG. Principles of Population Genetics. Sunderland: Sinauer Associates, Inc, 1997. 126. Futuyma DJ. Evolutionary Biology. Sunderland: Sinauer Associates, Inc, 1998.Google Scholar
  126. 127.
    Grover KK, Curtis CF, Sharma VP et al. Competitiveness of chemosterilised males and cytoplasmically incompatible (IS31B) males of Culex pipiens fatigans in the field. Bull Ent Res 1976a; 66:469–80.CrossRefGoogle Scholar
  127. 128.
    Grover KK, Suguna SG, Uppal DK et al. Field experiments on the competitiveness of males carrying genetic control systems for Aedes aegypti. Entomol Exp Appl 1976b; 20:8–18.Google Scholar
  128. 129.
    Curtis CF. Testing systems for the genetic control of mosquitoes. In: White D, ed. XV International Congress of Entomology. College Park: Entomological Society of America, 1977:106–16.Google Scholar
  129. 130.
    Rajagopalan PK, Curtis CF, Brooks GD et al. The density dependence of larval mortality of Culex pipiens fatigans in an urban situation and prediction of its effects on genetic control operations. Indian J Med Res 1977; 65:77–85.PubMedGoogle Scholar
  130. 131.
    Dame DA, Lowe RE, Williamson DL. Assessment of released sterile Anopheles albimanus and Glossina morsitans. In: Pal R, Kitzmiller B, Kanda T, eds. Cytogenetics and Genetics of Vectors Proceedings XVI International Congress of Entomology. Kyoto: Elsevier, 1981:231–41.Google Scholar
  131. 132.
    Lounibos LP. Genetic-control trials and the ecology of Aedes aegypti at the Kenya coast. In: Takken W, Scott TW, eds. Ecological Aspects for Application of Genetically Modified Mosquitoes. Springer Dordrecht: Frontis, 2003:33–43.Google Scholar
  132. 133.
    Catteruccia F, Godfray HCJ, Crisanti A. Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 2003; 299:1225–7.PubMedCrossRefGoogle Scholar
  133. 134.
    Moreira LA, Wang J, Collins FH et al. Fitness of anopheline mosquitoes expressing transgenes that inhibit plasmodium development. Genetics 2004; 166:1337–41.PubMedCrossRefGoogle Scholar
  134. 135.
    Irvin N, Hoddle MS, O’Brochta DA et al. Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proc Natl Acad Sci 2004; 101:891–6.PubMedCrossRefGoogle Scholar
  135. 136.
    Carey JR. Applied Demography for Biologists with Special Emphasis on Insects. New York: Oxford University Press, 1993.Google Scholar
  136. 137.
    Scott TW, Naksathit A, Day JF et al. A fitness advantage for Aedes aegypti and the virus it transmits when females feed only on human blood. Am J Trop Med Hyg 1997; 57(2):235–9.PubMedGoogle Scholar
  137. 138.
    Harrington LC, Edman JD, Scott TW. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol 2001; 38:411–22.PubMedGoogle Scholar
  138. 139.
    Prout T. The relationship between fitness components and population prediction in Drosophila. I: The estimation of fitness components. Genetics 1971a; 68:127–49.PubMedGoogle Scholar
  139. 140.
    Prout T. The relationship between fitness components and population prediction in Drosophila. II. Population prediction. Genetics 1971b; 68:127–49.PubMedGoogle Scholar
  140. 141.
    Manly BFJ. The Statistics of Natural Selection. London: Chapman and Hall, 1985.Google Scholar
  141. 142.
    Endler JA. Natural Selection in the Wild. Princeton: Princeton University Press, 1986.Google Scholar
  142. 143.
    Lehmann T, Hawley WA, Kamau L et al. Genetic differentiation of Anopheles gambiae populations from East and West Africa: Comparison of microsatellite and allozyme loci. Heredity 1996; 77:192–208.PubMedCrossRefGoogle Scholar
  143. 144.
    Lehmann TML, Gimnig JE, Hightower A et al. Spatial and temporal variation in kinship among Anopheles gambiae (Diptera: Culicidae) mosquitoes. J Med Entomol 2003; 40:421–9.PubMedGoogle Scholar
  144. 145.
    Coluzzi M, Sabatini A, Delia Torre A et al. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 2002; 298:1415–8.PubMedCrossRefGoogle Scholar
  145. 146.
    Delia Torre A, Tu Z, Petrarca V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem Mol Biol 2005; 35:755–69.CrossRefGoogle Scholar
  146. 147.
    Tripet F, Thiemann TC, Lanzaro GC. Effect of seminal fluids in mating between M and S forms of Anopheles gambiae. J Med Entomol 2005b; 42(596–603).Google Scholar
  147. 148.
    Ayala D, Goff G, Robert V et al. Population structure of the malaria vector Anopheles funestus (Diptera: Culicidae) in Madagascar and Comoros. Acta tropica 2006; 97:292–300.PubMedCrossRefGoogle Scholar
  148. 149.
    Michel AP, Ingrasci MJ, Schemerhorn BJ et al. Rangewide population genetic structure of the African malaria vector Anopheles funestus. Mol Ecol 2005; 14:4235–48.PubMedCrossRefGoogle Scholar
  149. 150.
    Edillo FE, Toure YT, Lanzaro GC et al. Spatial and habitat distribution of Anopheles gambiae and Anopheles arabiensis (Diptera: Culicidae) in Banambani village, Mali. J Med Entomol 2002; 39:70–7.PubMedCrossRefGoogle Scholar
  150. 151.
    Tripet F, Dolo G, Lanzaro GC. Multilevel analyses of genetic differentiation in Anopheles gambiae s.s. reveal patterns of gene flow important for malaria-fighting mosquito projects. Genetics 2005a; 169:313–24.PubMedCrossRefGoogle Scholar
  151. 152.
    Coluzzi M. Malaria vector analysis and control. Parasitol Today 1992; 8:113–8.PubMedCrossRefGoogle Scholar
  152. 153.
    Yawson AE, Weetman D, Wilson MD et al. Ecological zones rather than molecular forms predict genetic differentiation in the malaria vector Anopheles gambaie s.s. in Ghana. Genetics 2007; 175:751–61.PubMedCrossRefGoogle Scholar
  153. 154.
    Besansky NJ, Hill CA, Costantini C. No accounting for taste: Host preference in malaria vectors. Trends Parasitol 2004; 20:249–51.PubMedCrossRefGoogle Scholar
  154. 155.
    Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). Johannesburg: The South African Institute for Medical Research, 1987.Google Scholar
  155. 156.
    Diatta M, Spiegel A, Lochouarn L et al. Similar feeding preferences of Anopheles gambiae and A. arabiensis in Senegal. Trans Roy Soc Trop Med Hyg 1998; 92:270–2.PubMedCrossRefGoogle Scholar
  156. 157.
    Tabachnick WJ. Evolutionary genetics and arthropod-borne disease: The yellow fever mosquito. Amer Entomol 1991; 37:14–24.Google Scholar
  157. 158.
    Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S et al. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 2002; 66:213–22.PubMedGoogle Scholar
  158. 159.
    Gorrochotegui-Escalante N, Munoz ML, Fernandez-Salas I et al. Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of Mexico. Am J Trop Med Hyg 2000; 62:200–9.PubMedGoogle Scholar
  159. 160.
    Garcia-Franco F, Mde LM, Lozano-Fuentes S et al. Large genetic distances among Aedes aegypti populations along the South Pacific coast of Mexico. Am J Trop Med Hyg 2002; 66:594–8.PubMedGoogle Scholar
  160. 161.
    Bosio CF, Harrington LC, Jones J et al. Genetic structure of Aedes aegypti populations in Thailand using mtDNA. Am J Trop Med Hyg 2005; 72:434–42.PubMedGoogle Scholar
  161. 162.
    Nene V, Wortman JR, Lawson D et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007, (in press).Google Scholar
  162. 164.
    Lee JJ, Klowden MJ. A male accessory gland protein that modulates female mosquito (Diptera: Culicidae) host-seeking behavior. J Am Mosq Control Assoc 1999; 4–7.Google Scholar
  163. 165.
    Sirot LK, Poulson RL, McKenna MC, Girnary H, Wolfher MF, Harrington LC. Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction. Insect Biochem Mol Biol 2007 In press.Google Scholar
  164. 166.
    Dottorini T, Nicolaides L, Ranson H, Rogers DW, Crisanti A, Catteruccia F. A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc Natl Acad Sci 2007; 16215–20.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Thomas W. Scott
    • 3
  • Laura C. Harrington
    • 1
  • Bart G. J. Knols
    • 2
  • Willem Takken
    • 2
  1. 1.Department of EntomologyCornell UniversityIthacaUSA
  2. 2.Laboratory of EntomologyWageningen University and Research CentreWageningenThe Netherlands
  3. 3.Department of EntomologyUniversity of CaliforniaDavisUSA

Personalised recommendations