Skip to main content

Applications of Mosquito Ecology for Successful Insect Transgenesis-Based Disease Prevention Programs

  • Chapter
Book cover Transgenesis and the Management of Vector-Borne Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 627))

Abstract

Successful application of genetically modified mosquitoes (GMMs) for disease prevention requires close collaboration among scientists with a diverse spectrum of expertise. Perspectives ranging from theoretical to empirical-within the context of appropriate ethical, social, and cultural guidelines-will provide the essential insights that shape informed evaluation and implementation of GMMs by vector-borne disease specialists, public health officials, and policy makers. Ecologists and population biologists have key roles to play in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scott TW, Takken W, Knols BGJ et al. The ecology of genetically modified mosquitoes. Science 2002; 298:117–9.

    Article  PubMed  CAS  Google Scholar 

  2. Takken W, Scott TW. Ecological aspects for application of genetically modified mosquitoes. Springer Dordrecht: Frontis, 2003.

    Google Scholar 

  3. Gould F, Schliekelman P. Population genetics of autocidal control and strain replacement. Ann Rev Entomol 2004; 49:193–217.

    Article  CAS  Google Scholar 

  4. Knols BGJ, Louis C. Strategic plan to bridge laboratory and field research in disease vector control. Springer Dordrecht: Frontis, 2006.

    Google Scholar 

  5. Scott TW. Current thoughts about the integration of field and laboratory sciences in genetic control of disease vectors. In: Knols BGJ, Louis C, eds. Strategic Plan to Bridge Laboratory and Field Research in Disease Vector Control. Springer Dordrecht: Frontis, 2005:67–76.

    Google Scholar 

  6. Mukabana RW, Kannady K, Kiama GM et al. Ecologists can enable communities to implement malaria vector control in Africa. Malar J 2006; 5:9.

    Article  PubMed  Google Scholar 

  7. Reisen W. Lessons from the past: Historical studies by the University of Maryland and the University of California, Berkeley. In: Takken W, Scott TW, eds. Ecological Aspects for Application of Genetically Modified Mosquitoes. Springer Dordrecht: Frontis, 2003:25–32.

    Google Scholar 

  8. Ferguson HM, John B, Ng’habi K et al. Redressing the sex imbalance in knowledge of vector biology. Trends Ecol Evol 2005; 20:202–9.

    Article  PubMed  Google Scholar 

  9. Thornhill RA, Alcock J. Insect Mating Systems. Cambridge: Harvard University Press, 1983.

    Google Scholar 

  10. Partridge L. Lifetime reproductive success in Drosophila. In: TH CB, ed. Reproductive Success. Chicago: University of Chicago Press, 1988:11–23.

    Google Scholar 

  11. Clements AN. The biology of mosquitoes; sensory reception and behaviour. 1999.

    Google Scholar 

  12. Knols BGJ, Ng’habi K, Mathenge EM et al. MalariaSphere: A greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Malar J 2002; 1:19.

    Article  PubMed  Google Scholar 

  13. Knols BGJ, Nijru BN, Mukabana RW et al. Contained semi-field environments for ecological studies on transgenic African malaria vectors: Benefits and constraints. In: Scott TW, ed. Ecological Aspects for Application of Genetically Modified Mosquitoes. Springer Dordrecht: Frontis, 2003:91–106.

    Google Scholar 

  14. Dyck VA, Hendrichs J, Robinson AS. Sterile insect technique: Principles and practices in area-wide pest management. New York: Springer, 2005.

    Google Scholar 

  15. Takken W, Costantini C, Dolo G et al. Bringing laboratory and field research for genetic control of disease vectors: Springer/wageningen UR frontis series, 2006.

    Google Scholar 

  16. White GB. Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg 1974; 68:278–301.

    Article  PubMed  CAS  Google Scholar 

  17. Coetzee M, Craig M, le Sueur D. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today 2000; 16:74–7.

    Article  PubMed  CAS  Google Scholar 

  18. Girod R, Salvan M, Simard F et al. Evaluation of the vectorial capacity of Anopheles arabiensis (Diptera: Culicidae) on the island of Reunion: An approach to the health risk of malaria importation in an area of eradication. Bull Soc Pathol Exot 1999; 92:203–9.

    PubMed  CAS  Google Scholar 

  19. Chevillon C, Paul RE, Meeus Td et al. Thinking transgenic vectors in a population context: Some expectations and many open questions. In: Boete C, ed. Genetically Modified Mosquitoes for Malaria Control. Georgetown: Landes Bioscience, 2006:117–31.

    Google Scholar 

  20. Fontenille D, Lochouarn L, Diagne N et al. High annual and seasonal variations in malaria transmissions by anopheline and vector species composition in Dielmo, a holoendemic area in Senegal. Am J Trop Med Hyg 1997; 56:247–53.

    PubMed  CAS  Google Scholar 

  21. Charlwood JD, Kihonda J, Sama S et al. The rise and fall of Anopheles arabiensis (Diptera: Culicidae) in a Tanzanian village. Bull Entomol Res 1995; 85:37–44.

    Google Scholar 

  22. Favia G, Delia Torre A, Bagayoko M et al. Molecular identification of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Mol Biol 1997; 6:377–83.

    Article  PubMed  CAS  Google Scholar 

  23. Delia Torre A, Fanello C, Akogbeto M et al. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol 2001; 10:9–18.

    Article  Google Scholar 

  24. Favia G, Lanfrancotti A, Spanos L et al. Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol Biol 2001; 10:19–23.

    Article  PubMed  CAS  Google Scholar 

  25. Delia Torre A, Costantini C, Besansky NJ et al. Speciation within Anopheles gambiaethe glass is half full. Science 2002; 298:115–7.

    Article  Google Scholar 

  26. Slotman MA, Mendez MM, Delia Torre A et al. Genetic differentiation between the Bamako and Savanna chromosomal forms of Anopheles gambiae as indicated by amplified fragment length polymorphism analysis. Am J Trop Med Hyg 2006; 74:641–8.

    PubMed  CAS  Google Scholar 

  27. Tripet F, Wright J, Cornel AJ et al. Longitudinal survey of knockdown resistance to pyrethroid (kdr) in Mali, West Africa, and the evidence of its emergence in the Bamako form of Anopheles gambiae s.s. Am J Trop Med Hyg 2007; 76:81–7.

    PubMed  CAS  Google Scholar 

  28. Yuval B. Mating systems of blood-feeding flies. Ann Rev Entomol 2006; 51:413–40.

    Article  CAS  Google Scholar 

  29. Downes JA. The swarming and mating flight of Diptera. Ann Rev Entomol 1969; 14:271–98.

    Article  Google Scholar 

  30. Takken W, Knols BGJ. Odor-mediated behavior of Afrotropical malaria mosquitoes. Ann Rev Entomol 1999; 44:131–57.

    Article  CAS  Google Scholar 

  31. Sullivan RT. Insect swarming and mating. Florida Entomologist 1981; 64:44–65.

    Article  Google Scholar 

  32. Cooter RJ. Swarm flight behaviour in flies and locusts. In: Goldsworthy GJ, Wheeler CH, eds. Insect Flight. Boca Raton: CRC Press, 1989:165–203.

    Google Scholar 

  33. Shuster SM, Wade MJ. Mating systems and mating strategies. Monographs in Behavior and Ecology. Princeton: Princeton University Press, 2003:533.

    Google Scholar 

  34. Marchand RP. Field observations on swarming and mating in Anopheles gambiae mosquitoes in Tanzania. Neth J Zool 1984; 34:367–87.

    Article  Google Scholar 

  35. Charlwood JD, Jones MDR. Mating behaviour in the mosquito Anopheles gambiae II swarming behaviour. Physiol Entomol 1980; 5:315–20.

    Article  Google Scholar 

  36. Charlwood JD, Pinto J, Sousa CA et al. The swarming and mating behaviour of Anopheles gambiae (Diptera: Culicidae) from Sao Tome Island. J Vector Ecol 2002a; 27:178–83.

    PubMed  CAS  Google Scholar 

  37. Yuval B, Bouskila A. Temporal dynamics of mating and predation in mosquito swarms. Oecologia 1993; 95:65–9.

    Google Scholar 

  38. Charlwood JD, Thompson R, Madsen H. Observations on the swarming and mating behaviour of Anopheles funestus from southern Mozambique. Malar J 2003; 2:2.

    Article  PubMed  CAS  Google Scholar 

  39. Yuval B, Wekesa JW, Washino RK. Effects of body size on swarming behavior and mating success of male Anopheles freeborni (Diptera: Culicidae). J Insect Behavior 1993; 6:333–42.

    Article  Google Scholar 

  40. Verhoek B, Takken W. Age effects on insemination rate of Anopheles gambiae s.l. in the laboratory. Entomol Exp Appl 1994; 72:167–72.

    Article  Google Scholar 

  41. Mahmood F, Reisen WK. Anopheles stephensi (Diptera: Culicidae): Changes in male mating competence and reproductive system morphology associated with aging and mating. J Med Entomol 1982; 19(5):573–88.

    PubMed  CAS  Google Scholar 

  42. Mahmood F, Reisen WK. Anopheles culicifacies: Effects of age on the male reproductive system and mating ability of virgin adult mosquitoes. Med Vet Entomol 1994; 8:31–7.

    Article  PubMed  CAS  Google Scholar 

  43. Huho BJ, Ng’habi KR, Killeen GF et al. A reliable morphological method to assess the age of male Anopheles gambiae. Malar J 2006; 5:62.

    Article  PubMed  Google Scholar 

  44. Briegel H. Physiological bases of mosquito ecology. J Vector Ecol 2003; 28:1–11.

    PubMed  Google Scholar 

  45. Fernandes L, Briegel H. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J Vector Ecol 2005; 30:11–26.

    PubMed  Google Scholar 

  46. Yuval B, Holliday-Hanson ML, Washino RK. Energy budget of swarming male mosquitoes. Ecol Entomol 1994; 19:74–8.

    Article  Google Scholar 

  47. Foster WA. Mosquito sugar feeding and reproductive energetics. Ann Rev Entomol 1995; 40:443–74.

    Article  CAS  Google Scholar 

  48. Impoinvil DE, Kongere JO, Foster WA et al. Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenya. Med Vet Entomol 2004; 18:108–15.

    Article  PubMed  CAS  Google Scholar 

  49. Gary RE, Foster WA. Anopheles gambiae feeding and survival on honeydew and extra-floral nectar of peridomestic plants. Med Vet Entomol 2004; 18:102–7.

    Article  PubMed  Google Scholar 

  50. Gary RE, Foster WA. Diel timing and frequency of sugar feeding in the mosquito Anopheles gambiae, depending on sex, gonotrophic state and resource availability. Med Vet Entomol 2006; 20:308–16.

    Article  PubMed  Google Scholar 

  51. Yuval B, Fritz GN. Multiple mating in female mosquitoes—evidence from a field population of Anopheles freeborni (Diptera: Culicidae). Bull Entomol Res 1994; 84:137–49.

    Google Scholar 

  52. Huho BJ, Ng’habi KR, Killeen GF et al. Nature beats nurture: A case study of the physiological fitness of free-living and laboratory-reared male Anopheles gambiae s.l. J Exp Biol 2007; 210:2939–2947.

    Article  PubMed  CAS  Google Scholar 

  53. Giglioli MEC, Mason GF. The mating plug in anopheline mosquitoes. Proc R Ent Soc Lond Dordrecht: 1966; A41(7–9): 123–9.

    Google Scholar 

  54. Novikov YM. Monogamy of Anopheles messeae under natural conditions. Zool Zh 1981; 60:214–20.

    Google Scholar 

  55. Baimai V, Green CA. Monandry (monogamy) in natural populations of anopheline mosquitoes. J Am Mosq Contr Assoc 1987; 3(3):481–4.

    CAS  Google Scholar 

  56. Scarpassa VM, Tadei WP, Kerr WE. Biology of Amazonian anopheline mosquitoes. XVI. Evidence of multiple insemination (polyandry) in Anopheles nuneztovari Gabaldon, 1940 (Diptera: Culicidae). Rev Brasil Genet 1992; 15:51–64.

    Google Scholar 

  57. Tripet F, Toure Y, Dolo G et al. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg 2003; 68:1–5.

    PubMed  Google Scholar 

  58. Hartberg WK. Observations on the mating behaviour of Aedes aegypti in nature. Bull World Health Organ 1971; 45:847–50.

    PubMed  CAS  Google Scholar 

  59. Gubler DJ, Bhattacharya NC. Swarming and mating of Aedes albopictus subgenus Stegomyia in nature. Mosq News 1972; 32:219–23.

    Google Scholar 

  60. Norris DE, Shurtleff AC, Toure YT et al. Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae s.s. (Diptera: Culicidae). J Med Entomol 2001; 38:336–40.

    PubMed  CAS  Google Scholar 

  61. Fagerberg AJ, Fulton RE, Black WC. Microsatellite loci are not abundant in all arthropod genomes: Analyses in the hard tick, Ixodes scapularis, and the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 2001; 10:225–36.

    Article  PubMed  CAS  Google Scholar 

  62. Huber K, Loan LL, Hoang TH et al. Genetic differentiation of the dengue vector, Aedes aegypti (Ho Chi Minh City, Vietnam) using microsatellite markers. Mol Ecol 2002; 11:1629–35.

    Article  PubMed  CAS  Google Scholar 

  63. Craig G. Mosquitoes: Female monogamy induced by male accessory gland substance. Science 1967; 156:1499–500.

    Article  PubMed  Google Scholar 

  64. Spielman A, Leahy MG, Skaff V. Seminal loss in repeatedly mated female Aedes aegypti. Biol Bull 1967; 132:404–12.

    Article  Google Scholar 

  65. Gwadz RW, Craig GG. Female polygamy due to inadequate semen transfer in Aedes aegypti. Mosq News 1970; 30:355–60.

    Google Scholar 

  66. Christophers SR. Aedes aegypti (L.), the yellow fever mosquito: Its life history, bionomics and structure. Cambridge: Cambridge University Press, 1960.

    Google Scholar 

  67. Young ADM, Downe AER. Renewal of sexual receptivity in mated female mosquitoes, Aedes aegypti. Physiol Entomol 1982; 7:467–71.

    Article  Google Scholar 

  68. Williams RW, Berger A. The relation of female polygamy to gonotrophic activity in the ROCK stain of Aedes aegypti. Mosq News 1980; 40:597–604.

    Google Scholar 

  69. Wolfner MF. Tokens of love: Functions and regulation of Drosophila male accessory gland products. Insect Biochem Mol Biol 1997; 27:179–92.

    Article  PubMed  CAS  Google Scholar 

  70. Wolfner MF. The gifts that keep on giving: Physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 2002; 88:85–93.

    Article  PubMed  CAS  Google Scholar 

  71. Chapman T, Bangham J, Vinti G et al. The sex peptide of Drosophila melanogaster: Female post-mating responses analyzed by using RNA interference. Proc Natl Acad sci USA 2003; 100:9923–8.

    Article  PubMed  CAS  Google Scholar 

  72. Kubli E. Sex-peptides: Seminal peptides of the Drosophila male. Cell Mol Life Sci 2003; 60:1689–704.

    Article  PubMed  CAS  Google Scholar 

  73. Foster WA, Lea AO. Renewable fecundity of male Aedes aegypti following replenishment of seminal vesicles and accessory glands. J Insect Physiol 1975; 21:1085–90.

    Article  PubMed  CAS  Google Scholar 

  74. Youngson JHAM, Welch HM, Wood RJ. Meitotic drive and the D(MD) locus and fertility in the mosquito, Aedes aegypti (L). Genetica 1981; 54:335–40.

    Article  Google Scholar 

  75. Ponlawat A, Harrington L. Age and body size influence male sperm capacity of the Dengue vector Aedes aegypti (Diptera: Culicidae). J Med Entomol 2007; 44(3):422–5.

    Article  PubMed  Google Scholar 

  76. Benjamin SN, Bradshaw WE. Body size and flight activity effects on male reproductive success in the pitcher plant mosquito (Diptera: Culicidae). Ann Entomol Soc Am 1994; 87(3):331–6.

    Google Scholar 

  77. Dickinson JM, Klowden MJ. Reduced transfer of male accessory gland proteins and monandary in female Aedes aegypti mosquitoes. J Vector Ecol 1997; 22:95–8.

    PubMed  CAS  Google Scholar 

  78. Simmons LW. Male size, mating potential, and lifetime reproductive success in the field cricket Gryllus bimaculatus. Animal Behavior 1988; 36:372–9.

    Article  Google Scholar 

  79. Goldsmith SK, Alcock J. The mating chances of small males of the cerambycid beetle Trachyderes mandibularis differ in different environments (Coleoptera, Cerambycidae). J Insect Behavior 1993; 6:351–60.

    Article  Google Scholar 

  80. Vend FV, Carlson AD. Proximate mechanisms of sexual selection in the firefly Photinus pyralis (Coleoptera: Lampyridae). J Insect Behavior 1998; 11:191–207.

    Article  Google Scholar 

  81. Simmons LW, Stockley P, Jackson RL et al. Sperm competition or sperm selection: No evidence for female influence over paternity in yellow dung flies Scatophaga stecoraria. Behavioral Ecol Sociobio 1996; 38:199–206.

    Article  Google Scholar 

  82. Simmons LW, Parker GA. Individual variation in sperm competition success in the field cricket Gryllus bimaculatus. Animal Behavior 1992; 34:1463–70.

    Article  Google Scholar 

  83. Parker GA, Simmons L. Evolution of phenotypica optima and copula duration in dungflies. Nature 1994; 370:53–6.

    Article  Google Scholar 

  84. Bangham J, Chapman T, Partridge L. Effects of body size, accessory gland, and testis size on pre-and postcopulatory success in Drosophila melanogaster. Animal Behavior 2002; 64:915–21.

    Article  Google Scholar 

  85. Bradshaw WE, Holzapfel CM. Reproductive consequences of density-dependent size variation in the pitcher plant mosquito, Wyeomyia smithii (Diptera, Culicidae). Ann Entomol Soc Am 1992; 85:274–81.

    Google Scholar 

  86. Bradshaw WE, Holzapfel CM. Genetic constraints to life history evolution in the pitcher-plant mosquito Wyeomyia smithii. Evolution 1996; 50:1176–81.

    Article  Google Scholar 

  87. Okanda FM, Dao A, Njiru BN et al. Behavioural determinants of gene flow in malaria vector populations: Anopheles gambiae males select large females as mates. Malar J 2002; 1:10.

    Article  PubMed  CAS  Google Scholar 

  88. Klowden MJ, Chambers GM. Male accessory gland substances activate egg development in nutritionally stressed Ae. aegypti mosquitoes. J Insect Physiol 1991; 37:721–6.

    Article  CAS  Google Scholar 

  89. Kalb J, di Benedetto AJ, Wolfner MF. Probing the function of Drosophila melanogaster accessory glands by directed cell ablation. Proc Natl Acad Sci 1993; 92:10114–8.

    Google Scholar 

  90. Xue L, Noll M. Drosophila female sexual behavior induced by sterile males showing copulation complementation. Proc Nat Acad Sci 2000; 97:3272–5.

    Article  PubMed  CAS  Google Scholar 

  91. Taylor B, Jones MDR. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L): The phase-setting effects of light on and light off. J Exp Biol 1969; 51:59–70.

    PubMed  CAS  Google Scholar 

  92. Jones MDR, Gubbins SJ. Changes in the circadian flight activity of the mosquito Anopheles gambiae in relation to insemination, feeding, and oviposition. Physiol Entomol 1978; 7:281–89.

    Article  Google Scholar 

  93. Jones MDR, Gubbins SJ. Modification of female circadian flight-activity by a male accessory gland pheromone in the mosquito Culex pipiens quinquefasciatus. Physiol Entomol 1979; 4:345–51.

    Article  Google Scholar 

  94. Jones MDR. The programming of circadian flight activity in relation to mating and gonotrophic cycle in the mosquito, Aedes aegypti. Physiol Entomol 1981; 6:307–13.

    Article  Google Scholar 

  95. Chiba Y, Shinkawa Y, Yamamoto Y. A comparative study on insemination dependency of circadian activity pattern in mosquitoes. Physiol Entomol 1992; 17:213–8.

    Article  Google Scholar 

  96. Chiba Y, Yamamoto Y, Shimizu C. Insemination-dependent modification of circadian activity of the mosquito Culex pipiens pallens. Zool Sci 1990; 7:895–906.

    Google Scholar 

  97. Lavoipierre MMJ. Biting behavior of mated and unmated females of an African strain of Aedes aegypti. Nature 1958; 181:1781–2.

    Article  PubMed  CAS  Google Scholar 

  98. Judson CL. Feeding and oviposition behavior in the mosquito Aedes aegypti (L.) I. Preliminary studies of physiological control mechanisms. Biol Bull 1967; 133:369–77.

    Article  PubMed  CAS  Google Scholar 

  99. Klowden MJ, Lea AO. Humoral inhibition of host seeking in Aedes aegypti during oocyte maturation. J Insect Physiol 1979; 24:231–5.

    Article  Google Scholar 

  100. Gillett JD. Variation in the hatching-responses of Aedes eggs (Diptera: Culicidae). Bull Entomol Res 1955; 46:241–54.

    Google Scholar 

  101. Leahy MG, Craig GG. Accessory gland substance as a stimulant for oviposition in Aedes aegypti and Ae. albopictus. Mosq News 1965; 25:448–52.

    Google Scholar 

  102. Hiss EA, Fuchs M. The effect of matrone on oviposition in the mosquito, Aedes aegypti. J Insect Physiol 1972; 18:2217–27.

    Article  PubMed  CAS  Google Scholar 

  103. Ramalingam S, Craig GG. Functions of the male accessory gland secretions of Aedes mosquitoes (Diptera: Culicidae): Transplantation studies. Can Entomol 1976; 108:995–60.

    Google Scholar 

  104. Freyvogel T, Hunter R, Smith E. Nonspecific esterases in mosquitoes. J Histochem 1968; 16:765–90.

    CAS  Google Scholar 

  105. Klowden MJ, Chambers GM. Ovarian development and adult mortality in Aedes aegypti treated with sucrose, juvenile hormone, and methoprene. J Insect Physiol 1989; 35:513–7.

    Article  CAS  Google Scholar 

  106. Klowden MJ, Chambers GM. Reproductive and metabolic differences between Ae. aegypti and Ae. albopictus (Diptera: Culicidae). J Med Entomol 1992; 29:467–71.

    PubMed  CAS  Google Scholar 

  107. Klowden MJ. Mating and nutritional state affect the reproduction of Aedes albopictus mosquitoes. J Am Mosq Contr Assoc 1993; 9:169–73.

    CAS  Google Scholar 

  108. Edman JD. Rate of digestion of three human blood fractions in Aedes aegypti (Diptera: Culicidae). Ann Entomol Soc Am 1970; 63:1778–9.

    Google Scholar 

  109. Downe AER. Internal regulation of rate of digestion of blood meals in the mosquito, Aedes aegypti. J Insect Physiol 1975; 21:1835–9.

    Article  PubMed  CAS  Google Scholar 

  110. Klowden MJ. The check is in the male: Male mosquitoes affect female physiology and behavior. J Am Mosq Contr Assoc 1999; 15(2):213–20.

    CAS  Google Scholar 

  111. Fuchs MS, Craig GB, Despommier DD. The protein nature of the substance inducing female monogamy in Aedes aegypti. J Insect Physiol 1969; 15:701–9.

    Article  CAS  Google Scholar 

  112. Fuchs MS, Craig GB, Hiss EA. The biochemical basis of female monogamy in mosquitoes. I. Extraction of the active principles from Aedes aegypti. Life Sci 1968; 7:835–9.

    Article  PubMed  CAS  Google Scholar 

  113. Fuchs MS, Hiss EA. The partial purification and separation of the protein components of matrone from Aedes aegypti. J Insect Physiol 1970; 16:931–9.

    Article  PubMed  CAS  Google Scholar 

  114. Fowler K, Partridge L. A cost of mating in female fruitflies. Nature 1989; 338:760–1.

    Article  Google Scholar 

  115. Partridge L, Ewing A, Chandler A. Male size and mating success in Drosophila melanogaster: The roles of male and female behaviour. Animal Behavior 1987; 35:555–62.

    Article  Google Scholar 

  116. Partridge L, Fowler K. Non-mating costs of exposure to males in female Drosophila melanogaster. J Insect Physiol 1990; 36:419–25.

    Article  Google Scholar 

  117. Chapman T, Liddle L, Kalb JM et al. Male seminal fluid components cause the cost of mating in Drosophila melanogaster females. Nature 1995; 373:241–4.

    Article  PubMed  CAS  Google Scholar 

  118. Marrelli M, Li C, Rasgon JL et al. Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood. Proc Natl Acad Sci 2007; 104:5580–3.

    Article  PubMed  CAS  Google Scholar 

  119. James AA. Gene drive systems in mosquitoes: Rules of the road. Trends Parasitol 2005; 21:64–7.

    Article  PubMed  CAS  Google Scholar 

  120. Beatty J. Fitness: Theoretical contexts. In: Keller EF, Lloyd EA, eds. Keywords in Evolutionary Biology. Cambridge: Harvard University Press, 1992:115–9.

    Google Scholar 

  121. Paul D. Fitness: Historical perspective. In: Keller EF, Lloyd EA, eds. Keywords in Evolutionary Biology. Cambridge: Harvard University Press, 1992:112–4.

    Google Scholar 

  122. Munstermann LE. Unexpected genetic consequences of colonization and inbreeding: Allozyme tracking in Culicidae (Diptera). Ann Entomol Soc Am 1994; 87:157–64.

    Google Scholar 

  123. Mukhopadhyay J, Rangel EF, Ghosh K et al. Patterns of genetic variability in colonized strains of Lutzomyia longipalpis (Diptera: Psychodidae) and its consequences. Amer J Trop Med Hyg 1997; 57:216–21.

    CAS  Google Scholar 

  124. Tabachnick WJ. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector-borne diseases. J Med Entomol 2003; 40:597–606.

    PubMed  CAS  Google Scholar 

  125. Hard DL, Clark AG. Principles of Population Genetics. Sunderland: Sinauer Associates, Inc, 1997. 126. Futuyma DJ. Evolutionary Biology. Sunderland: Sinauer Associates, Inc, 1998.

    Google Scholar 

  126. Grover KK, Curtis CF, Sharma VP et al. Competitiveness of chemosterilised males and cytoplasmically incompatible (IS31B) males of Culex pipiens fatigans in the field. Bull Ent Res 1976a; 66:469–80.

    Article  Google Scholar 

  127. Grover KK, Suguna SG, Uppal DK et al. Field experiments on the competitiveness of males carrying genetic control systems for Aedes aegypti. Entomol Exp Appl 1976b; 20:8–18.

    Google Scholar 

  128. Curtis CF. Testing systems for the genetic control of mosquitoes. In: White D, ed. XV International Congress of Entomology. College Park: Entomological Society of America, 1977:106–16.

    Google Scholar 

  129. Rajagopalan PK, Curtis CF, Brooks GD et al. The density dependence of larval mortality of Culex pipiens fatigans in an urban situation and prediction of its effects on genetic control operations. Indian J Med Res 1977; 65:77–85.

    PubMed  Google Scholar 

  130. Dame DA, Lowe RE, Williamson DL. Assessment of released sterile Anopheles albimanus and Glossina morsitans. In: Pal R, Kitzmiller B, Kanda T, eds. Cytogenetics and Genetics of Vectors Proceedings XVI International Congress of Entomology. Kyoto: Elsevier, 1981:231–41.

    Google Scholar 

  131. Lounibos LP. Genetic-control trials and the ecology of Aedes aegypti at the Kenya coast. In: Takken W, Scott TW, eds. Ecological Aspects for Application of Genetically Modified Mosquitoes. Springer Dordrecht: Frontis, 2003:33–43.

    Google Scholar 

  132. Catteruccia F, Godfray HCJ, Crisanti A. Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 2003; 299:1225–7.

    Article  PubMed  CAS  Google Scholar 

  133. Moreira LA, Wang J, Collins FH et al. Fitness of anopheline mosquitoes expressing transgenes that inhibit plasmodium development. Genetics 2004; 166:1337–41.

    Article  PubMed  Google Scholar 

  134. Irvin N, Hoddle MS, O’Brochta DA et al. Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proc Natl Acad Sci 2004; 101:891–6.

    Article  PubMed  CAS  Google Scholar 

  135. Carey JR. Applied Demography for Biologists with Special Emphasis on Insects. New York: Oxford University Press, 1993.

    Google Scholar 

  136. Scott TW, Naksathit A, Day JF et al. A fitness advantage for Aedes aegypti and the virus it transmits when females feed only on human blood. Am J Trop Med Hyg 1997; 57(2):235–9.

    PubMed  CAS  Google Scholar 

  137. Harrington LC, Edman JD, Scott TW. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol 2001; 38:411–22.

    PubMed  CAS  Google Scholar 

  138. Prout T. The relationship between fitness components and population prediction in Drosophila. I: The estimation of fitness components. Genetics 1971a; 68:127–49.

    PubMed  CAS  Google Scholar 

  139. Prout T. The relationship between fitness components and population prediction in Drosophila. II. Population prediction. Genetics 1971b; 68:127–49.

    PubMed  CAS  Google Scholar 

  140. Manly BFJ. The Statistics of Natural Selection. London: Chapman and Hall, 1985.

    Google Scholar 

  141. Endler JA. Natural Selection in the Wild. Princeton: Princeton University Press, 1986.

    Google Scholar 

  142. Lehmann T, Hawley WA, Kamau L et al. Genetic differentiation of Anopheles gambiae populations from East and West Africa: Comparison of microsatellite and allozyme loci. Heredity 1996; 77:192–208.

    Article  PubMed  CAS  Google Scholar 

  143. Lehmann TML, Gimnig JE, Hightower A et al. Spatial and temporal variation in kinship among Anopheles gambiae (Diptera: Culicidae) mosquitoes. J Med Entomol 2003; 40:421–9.

    PubMed  Google Scholar 

  144. Coluzzi M, Sabatini A, Delia Torre A et al. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 2002; 298:1415–8.

    Article  PubMed  CAS  Google Scholar 

  145. Delia Torre A, Tu Z, Petrarca V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem Mol Biol 2005; 35:755–69.

    Article  CAS  Google Scholar 

  146. Tripet F, Thiemann TC, Lanzaro GC. Effect of seminal fluids in mating between M and S forms of Anopheles gambiae. J Med Entomol 2005b; 42(596–603).

    Google Scholar 

  147. Ayala D, Goff G, Robert V et al. Population structure of the malaria vector Anopheles funestus (Diptera: Culicidae) in Madagascar and Comoros. Acta tropica 2006; 97:292–300.

    Article  PubMed  Google Scholar 

  148. Michel AP, Ingrasci MJ, Schemerhorn BJ et al. Rangewide population genetic structure of the African malaria vector Anopheles funestus. Mol Ecol 2005; 14:4235–48.

    Article  PubMed  CAS  Google Scholar 

  149. Edillo FE, Toure YT, Lanzaro GC et al. Spatial and habitat distribution of Anopheles gambiae and Anopheles arabiensis (Diptera: Culicidae) in Banambani village, Mali. J Med Entomol 2002; 39:70–7.

    Article  PubMed  Google Scholar 

  150. Tripet F, Dolo G, Lanzaro GC. Multilevel analyses of genetic differentiation in Anopheles gambiae s.s. reveal patterns of gene flow important for malaria-fighting mosquito projects. Genetics 2005a; 169:313–24.

    Article  PubMed  CAS  Google Scholar 

  151. Coluzzi M. Malaria vector analysis and control. Parasitol Today 1992; 8:113–8.

    Article  PubMed  CAS  Google Scholar 

  152. Yawson AE, Weetman D, Wilson MD et al. Ecological zones rather than molecular forms predict genetic differentiation in the malaria vector Anopheles gambaie s.s. in Ghana. Genetics 2007; 175:751–61.

    Article  PubMed  CAS  Google Scholar 

  153. Besansky NJ, Hill CA, Costantini C. No accounting for taste: Host preference in malaria vectors. Trends Parasitol 2004; 20:249–51.

    Article  PubMed  Google Scholar 

  154. Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). Johannesburg: The South African Institute for Medical Research, 1987.

    Google Scholar 

  155. Diatta M, Spiegel A, Lochouarn L et al. Similar feeding preferences of Anopheles gambiae and A. arabiensis in Senegal. Trans Roy Soc Trop Med Hyg 1998; 92:270–2.

    Article  PubMed  CAS  Google Scholar 

  156. Tabachnick WJ. Evolutionary genetics and arthropod-borne disease: The yellow fever mosquito. Amer Entomol 1991; 37:14–24.

    Google Scholar 

  157. Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S et al. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 2002; 66:213–22.

    PubMed  Google Scholar 

  158. Gorrochotegui-Escalante N, Munoz ML, Fernandez-Salas I et al. Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of Mexico. Am J Trop Med Hyg 2000; 62:200–9.

    PubMed  CAS  Google Scholar 

  159. Garcia-Franco F, Mde LM, Lozano-Fuentes S et al. Large genetic distances among Aedes aegypti populations along the South Pacific coast of Mexico. Am J Trop Med Hyg 2002; 66:594–8.

    PubMed  CAS  Google Scholar 

  160. Bosio CF, Harrington LC, Jones J et al. Genetic structure of Aedes aegypti populations in Thailand using mtDNA. Am J Trop Med Hyg 2005; 72:434–42.

    PubMed  CAS  Google Scholar 

  161. Nene V, Wortman JR, Lawson D et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007, (in press).

    Google Scholar 

  162. Lee JJ, Klowden MJ. A male accessory gland protein that modulates female mosquito (Diptera: Culicidae) host-seeking behavior. J Am Mosq Control Assoc 1999; 4–7.

    Google Scholar 

  163. Sirot LK, Poulson RL, McKenna MC, Girnary H, Wolfher MF, Harrington LC. Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction. Insect Biochem Mol Biol 2007 In press.

    Google Scholar 

  164. Dottorini T, Nicolaides L, Ranson H, Rogers DW, Crisanti A, Catteruccia F. A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc Natl Acad Sci 2007; 16215–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Scott, T.W., Harrington, L.C., Knols, B.G.J., Takken, W. (2008). Applications of Mosquito Ecology for Successful Insect Transgenesis-Based Disease Prevention Programs. In: Aksoy, S. (eds) Transgenesis and the Management of Vector-Borne Disease. Advances in Experimental Medicine and Biology, vol 627. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78225-6_13

Download citation

Publish with us

Policies and ethics