Advertisement

Technological Advances to Enhance Agricultural Pest Management

  • Thomas A. Miller
  • Carol R. Lauzon
  • David J. Lampe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 627)

Abstract

Biotechnology offers new solutions to existing and future pest problems in agriculture including, for the first time, possible tools to use against insect transmitted pathogens causing plant diseases. Here, we describe the strategy first described as Autocidal Biological Control applied for the development of conditional lethal pink bollworm strains. When these strains are mass-reared, the lethal gene expression is suppressed by a tetracydine repressor element, which is activated by the presence of chlorotetracydine, a normal component of the mass-rearing diet. Once removed from the tetracydine diet, the lethal genes are passed on to offspring when ordinary lab-reared pink bollworms mate with special lethal strains. Lethality is dominant (one copy sufficient for lethality), expressed in the egg stage and affects all eggs (100% lethal expression). The initial investment by the California Cotton Pest Control Board is an outstanding example of research partnerships between agriculture industry, the USDA and land grant universities.

Keywords

Horizontal Gene Transfer Terminal Restriction Fragment Length Polymorphism Sterile Insect Technique Rice Stripe Virus Lethal Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davidson G. The genetic control of insect pests. New York: Academic Press Inc., 1974.Google Scholar
  2. 2.
    Ashburner M, Hoy MA, Peloquin JJ. Prospects for the genetic transformation of arthropods. Insect Mol Biol 1998; 7:201–213.PubMedCrossRefGoogle Scholar
  3. 3.
    Heinrich JC, Scott MJ. A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA 2000; 97:8229–8232.PubMedCrossRefGoogle Scholar
  4. 4.
    Beard, CF, Durvasula RV, Richards FF. Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 1998; 4:581–591.PubMedCrossRefGoogle Scholar
  5. 6.
    Ehrlich KC, Cotty PJ. An isolate of Aspergillus flavus used to reduce aflatoxin contamination in cottonseed has a defective polyketide synthase gene. Appl Microbiol Biotechnol 2005; 65(4):473–8.CrossRefGoogle Scholar
  6. 7.
    Hillman JD. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie van Leeuwenhoek 2002; 82:361–366.PubMedCrossRefGoogle Scholar
  7. 9.
    Westendorfa AM, Gunzerb F, Deppenmeierc S et al. Intestinal immunity of Escherichia coli NISSLE 1917: A safe carrier for therapeutic molecules. FEMS Immunol Med Microbiol 2005; 43:373–384.CrossRefGoogle Scholar
  8. 10.
    Rao S, Hu S, McHugh L et al. Toward a live microbial microbicide for HIV: Commensal bacteria secreting an HIV fusion inhibitor peptide Proc Natl Acad Sci USA 2005; 102:11993–11998.PubMedCrossRefGoogle Scholar
  9. 11.
    Knipling EF. Possibilities of insect control or eradication through the use of sexually sterile males. Econ Entomol 1955; 48:459–462.Google Scholar
  10. 12.
    Staten RT, Rosander RW, Keaveny DF. Genetic control of cotton insects; The PBW as a working programme. Proc Internat Symp On Management of Insect Pests. Vienna: 1992:269–283, (Pub International Atomic Energy Agency, Vienna, 1993).Google Scholar
  11. 13.
    Van Steenwyk RA, Henneberry TJ, Ballmer GR et al. Mating competitiveness of laboratory-cultured and sterilized PBW for use in a sterile moth release program. J Econ Entomol 1979; (72):502–505.Google Scholar
  12. 14.
    Miller E, Staten RT, Jones E et al. Effects of 20 krad of gamma irradiation on reproduction of pink bollworm (Lepidoptera: Gelechiidae) and their F1 progeny: Potential impact on the identification of trap catches. J Econ Entomol 1984; (77):304–307.Google Scholar
  13. 15.
    Miller TA. Control of pink bollworm. Pesticide Outlook 2001; 12:68–70.CrossRefGoogle Scholar
  14. 16.
    Fryxell KJ, Miller T. Autocidal Biological Control: A general strategy for insect control based on genetic transformation with a highly conserved gene. J Econ Entomol 1995; 88:1221–1232.Google Scholar
  15. 17.
    Prasher DC. Using GFP to see the light. Trends Genet 1995; 11:320–323.PubMedCrossRefGoogle Scholar
  16. 18.
    Fraser MJ, Ciszczon T, Elick T et al. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 1996; 5:141–151.PubMedCrossRefGoogle Scholar
  17. 19.
    Peloquin JJ, Thibault ST, Staten R et al. Germ-line transformation of pink bollworm (Lepidoptera: Gelechiidae) mediated by the piggyBac transposable element. Insect Mol Biol 2000; 9:323–333.PubMedCrossRefGoogle Scholar
  18. 20.
    Thomas DD, Donnelly CA, Wood RJ et al. Insect population control using a dominant, repressible, lethal genetic system. Science 2000; 287:2474–2476.PubMedCrossRefGoogle Scholar
  19. 21.
    Miller TA, Lampe DJ, Lauzon CR. Transgenic and paratransgenic insects in crop protection. In: Ishaaya I, Nauen R, Horowitz R, eds. Insecticide Design Using Advanced Technologies. Heidelberg, Germany: Springer-Verlag, 2007:87–103.CrossRefGoogle Scholar
  20. 22.
    Miller TA, Lauzon CR, Lampe D et al. Paratransgenesis applied to control insect-transmitted plant pathogens: The Pierce’s disease case. In: Bourtzis K, Miller TA, eds. Insect Symbiosis 2. FL: Taylor and Francis, London/CRC Press, Boca Raton, 2006:247–263.Google Scholar
  21. 23.
    Rubin EJ, Akerley BJ, Novik VN et al. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci USA 1999; 96:1645–1650.PubMedCrossRefGoogle Scholar
  22. 24.
    Zhang JK, Pritchett MA, Lampe DJ et al. In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himarl. Proc Natl Acad Sci USA 2000; 97:9665–70.PubMedCrossRefGoogle Scholar
  23. 25.
    Bextine B, Lampe D, Lauzon C et al. Establishment of a genetically marked insect-derived symbiont in multiple host plants. Curr Microbiol 2005; 50:1–7.PubMedCrossRefGoogle Scholar
  24. 26.
    Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ et al. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998; 212:77–86.PubMedCrossRefGoogle Scholar
  25. 27.
    Chiang SL, Mekalanos JJ. Construction of a Vibrio cholerae vaccine candidate using transposon delivery and FLP recombinase-mediated excision. Infect Immun 2000; 68:6391–6397.PubMedCrossRefGoogle Scholar
  26. 28.
    Masaki H, Ohta T. Colicin E3 and its immunity genes. J Mol Biol 1985; 182:217–227.PubMedCrossRefGoogle Scholar
  27. 29.
    Engelberg-Kulka H, Glaser G. Addiction modules and programmed cell death and antideath in bacterial cultures. Ann Rev Microbiol 1999; 53:43–70.CrossRefGoogle Scholar
  28. 30.
    Diaz E, Munthali M, de Lorenzo V et al. Universal barrier to lateral spread of specific genes among microorganisms. Mol Microbiol 1994; 13:855–61.PubMedCrossRefGoogle Scholar
  29. 31.
    Van Sluys MA, de Oliveira MC, Monteiro-Vitorello CB et al. Comparative analyses of the complete genome sequences of Pierce’s disease and citrus variegated chlorosis strains of Xylella fastidiosa. J Bacteriol 2003; 185:1018–26.PubMedCrossRefGoogle Scholar
  30. 32.
    Reddy KV, Yedery RD, Aranha C. Antimicrobial peptides: Premises and promises. Int J Antimicrob Agents 2004; 24:536–47.PubMedCrossRefGoogle Scholar
  31. 33.
    Kuzina LV, Miller TA, Cooksey DA. In vitro activities of antibiotics and antimicrobial peptides against the plant pathogenic bacterium Xylella fastidiosa. Lett Appl Microbiol 2006; 42:514–20.PubMedCrossRefGoogle Scholar
  32. 34.
    Yoshida S, Ioka D, Matsuoka H et al. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol Biochem Parasitol 2001; 113:89–96.PubMedCrossRefGoogle Scholar
  33. 35.
    Newman KL, Almeida RP, Purcell AH et al. Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc Natl Acad Sci USA 2004; 101:1737–42.PubMedCrossRefGoogle Scholar
  34. 36.
    Taghavi S, Barac T, Greenberg B et al. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 2005; 71:8500–8505.PubMedCrossRefGoogle Scholar
  35. 37.
    Bassler B. Small Talk: Cell-to-cell communication in bacteria. Cell 2002; 109:421–424.PubMedCrossRefGoogle Scholar
  36. 38.
    Miller T, Staten RT. The pink bollworm. Tale of a Transgenic Tool. Agrichemical Environmental News, 2001, (http://www.aenews.wsu.edu/June01AENews/June01AENews.htm).
  37. 39.
    Miller TA. Rachel Carson and the adaptation of biotechnology to crop protection. Amer Entomol 2004; 50:194–198.Google Scholar
  38. 40.
    Bextine B, Lampe D, Lauzon C et al. Establishment of a genetically marked insect-derived symbiont in multiple host plants. Current Microbiol 2005; 50:1–7.PubMedCrossRefGoogle Scholar
  39. 41.
    Hallerman E. Glofish, the first GM animal commercialized: Profits amid controversy. 2004, (http://www.isb.vt.edu/articles/jun0405.htm).

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  • Thomas A. Miller
    • 3
  • Carol R. Lauzon
    • 1
  • David J. Lampe
    • 2
  1. 1.Biological Sciences DepartmentCalifornia State University East BayHaywardUSA
  2. 2.Biological Sciences DepartmentDuquesne UniversityPittsburghUSA
  3. 3.Entomology DepartmentUniversity of CaliforniaRiversideUSA

Personalised recommendations