Perspectives on the State of Insect Transgenics

  • David A. O’Brochta
  • Alfred M. Handler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 627)


Genetic transformation is a critical component to the fundamental genetic analysis of insect species and holds great promise for establishing strains that improve population control and behavior for practical application. This is especially so for insects that are disease vectors, many of which are currently subject to genomic sequence analysis, and intensive population control measures that must be improved for better efficacy and cost-effectiveness. Transposon-mediated germ-line transformation has been the ultimate goal for most fundamental and practical studies, and impressive strides have been made in recent development of transgene vector and marker systems for several mosquito species. This has resulted in rapid advances in functional genomic sequence analysis and new strategies for biological control based on conditional lethality. Importantly, advances have also been made in our ability to use these systems more effectively in terms of enhanced stability and targeting to specific genomic loci. Nevertheless, not all insects are currently amenable to germ-line transformation techniques, and thus advances in transient somatic expression and paratransgenesis have also been critical, if not preferable for some applications. Of particular importance is how this technology will be used for practical application. Early ideas for population replacement of indigenous pests with innocuous transgenic siblings by transposon-vector spread, may require reevaluation in terms of our current knowledge of the behavior of transposons currently available for transformation. The effective implementation of any control program using released transgenics, will also benefit from broadening the perspective of these control measures as being more mainstream than exotic.


Transposable Element Enhance Green Fluorescent Protein Sterile Insect Technique Transgenic Strain Hybrid Dysgenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Handler AM, O’Brochta DA. Prospects for gene transformation in insects. Ann Rev Entomol 1991; 36:159–183.CrossRefGoogle Scholar
  2. 2.
    McCrane V, Carlson JO, Miller BR et al. Microinjection of DNA into Aedes triseriatus ova and detection of integration. Amer J Trop Med Hyg 1988; 39:502–510.Google Scholar
  3. 3.
    Miller LH, Sakai RK, Romans P et al. Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 1987; 237:779–781.CrossRefPubMedGoogle Scholar
  4. 4.
    Morris AC, Eggelston P, Crampton JM. Genetic transformation of the mosquito Aedes aegypti by micro-injection of DNA. Med Vet Entomology 1989; 3:1–7.CrossRefGoogle Scholar
  5. 5.
    Rio DC. P transposable elements in Drosophila melanogaster. In: Craig NL, Craige R, Gellert M et al, eds. Mobile DNA II. Washington, DC: ASM Press, 2002:1204.Google Scholar
  6. 6.
    Jasinskiene N, Coates CJ, Benedict MQ et al. Stable, transposon mediated transformation of the yellow fever mosquito, Aedes aegypti, using the Hermes element from the housefly. Proc Natl Acad Sci 1998; 95:3743–3747.CrossRefPubMedGoogle Scholar
  7. 7.
    Coates CJ, Jasinskiene N, Miyashiro L et al. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci 1998; 95:3748–3751.CrossRefPubMedGoogle Scholar
  8. 8.
    Fang J, Han Q, Li J. Isolation, characterization, and functional expression of kynurenine aminotransferase cDNA from the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 2002; 32:943–950.CrossRefPubMedGoogle Scholar
  9. 9.
    Bhalla SC. White eye, a new sex-linked mutant of Aedes aegypti. Mosquito News 1968; 28:380–385.Google Scholar
  10. 10.
    Loukeris TG, Livadaras I, Arca B et al. Gene transfer into the Medfly, Ceratitis capitata, using a Drosophila hydei transposable element. Science 1995; 270:2002–2005.CrossRefPubMedGoogle Scholar
  11. 11.
    Handler AM, McCombs SD, Fraser MJ et al. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci USA 1998; 95:7520–7525.CrossRefPubMedGoogle Scholar
  12. 12.
    Zwiebel LJ, Saccone G, Zacharaopoulou A et al. The white gene of Ceratitis capitata: A phenotypic marker of germline transformation. Science 1995; 270:2005–2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Horn C, Offen N, Nystedt S et al. piggyBac-based insertional mutagensis and enhancer detection as a tool for functional insect genomics. Genetics 2003; 163:647–661.PubMedGoogle Scholar
  14. 14.
    Higgs S, Traul D, Davis BS et al. Green fluorescent protein expressed in living mosquitoes— without the requirement of transformation. Biotechniques 1996; 21:660–664.PubMedGoogle Scholar
  15. 15.
    Catteruccia F, Nolan T, Loukeris TG et al. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 2000; 405:959–962.CrossRefPubMedGoogle Scholar
  16. 16.
    Yoshida S, Watanabe H. Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito. Insect Mol Biol 2006; 15:403–410.CrossRefPubMedGoogle Scholar
  17. 17.
    Lombardo F, Nolan N, Lycett G et al. An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi. Insect Mol Biol 2005; 14:207–216.CrossRefPubMedGoogle Scholar
  18. 18.
    Brown AE, Bugeon L, Crisanti A et al. Stable and heritable gene silencing in the malaria vector Anopheles stephensi. Nuc Acid Res 2003; 31:e85.CrossRefGoogle Scholar
  19. 19.
    Moreira LA, Edwards MJ, Adhami F et al. Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci USA 2000; 97:10895–10898.CrossRefPubMedGoogle Scholar
  20. 20.
    Moreira LA, Ito J, Ghosh A et al. Bee venom phospholipase inhibits marlaria parasite development in transgenic mosquitoes. J Biol Chem 2002; 25:40839–40843.CrossRefGoogle Scholar
  21. 21.
    Grossman GL, Rafferty CS, Clayton JR et al. Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Molec Biol 2001; 10:597–604.CrossRefGoogle Scholar
  22. 22.
    Kim W, Koo H, Richman AM et al. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): Effects on susceptibility to Plasmodium. J Med Entomol 2004; 41:447–455.PubMedGoogle Scholar
  23. 23.
    Tamura T, Thibert C, Royer C et al. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 2000; 18:81–84.CrossRefPubMedGoogle Scholar
  24. 24.
    Adachi T, Tomita M, Shimizu K et al. Generation of hybrid transgenic silkworms that express Bombyx mori prolyl-hydroxylase alpha-subunits and human collagens in posterior silk glands: Production of cocoons that contained collagens with hydroxylated proline residues. J Biotechnol 2006; 126:205–219.CrossRefPubMedGoogle Scholar
  25. 25.
    Imamura M, Nakahara Y, Kanda T et al. A transgenic silkworm expressing the immune-inducible cecropin B-GFP reporter gene. Insect Biochem Mol Biol 2006; 36:429–434.CrossRefPubMedGoogle Scholar
  26. 26.
    Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genetic 1989; 5:103–107.CrossRefGoogle Scholar
  27. 27.
    Rubin GM, Spradling AC. Genetic transformation of Drosophila with transposable element vectors. Science 1982; 218:348–353.CrossRefPubMedGoogle Scholar
  28. 28.
    Rubin GM, Spradling AC. Vectors for P element gene transfer in Drosophila. Nuc Acids Res 1983; 11:6341–6351.CrossRefGoogle Scholar
  29. 29.
    Bingham PM, Kidwell MG, Rubin GM. The molecular basis of P-M hybrid dysgenesis: The role of the P element, a P-strain-specific transposon family. Cell 1982; 29:995–1004.CrossRefPubMedGoogle Scholar
  30. 30.
    Handler AM. An introduction to the history and methodology of insect gene transformation. In: Handler AM, James AA, eds. Transgenic Insects: Methods and Applications. Boca Raton: CRC Press LLC, 2000:397.Google Scholar
  31. 31.
    Franz G, Savakis C. Minos, a new transposable element from Drosophila hydei, is a member of the Tcl-like family of transposons. Nucleic Acids Res 1991; 19:6646.CrossRefPubMedGoogle Scholar
  32. 32.
    Medhora MM, MacPeek AH, Hard DL. Excision of the Drosophila transposable element mariner: Identification and characterization of the Mos factor. EMBO J 1988; 7:2185–2189.PubMedGoogle Scholar
  33. 33.
    Atkinson PW, Warren WD, O’Brochta DA. The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc Natl Acad Sci USA 1993; 90:9693–9697.CrossRefPubMedGoogle Scholar
  34. 34.
    Sundararajan P, Atkinson PW, O’Brochta DA. Transposable element interactions in insects: Crossmobilization of hobo and Hermes. Insect Molec Biol 1999; 8:359–368.CrossRefGoogle Scholar
  35. 35.
    Handler AM, Gomez SP. The hobo transposable element excises and has related elements in tephritid species. Genetics 1996; 143:1339–1347.PubMedGoogle Scholar
  36. 36.
    Handler AM. Isolation and analysis of a new hopper hAT transposon from the Bactrocera dorsalis white eye strain. Genetica 2003; 118:17–24.CrossRefPubMedGoogle Scholar
  37. 37.
    Cary LC, Goebel M, Corsaro BG et al. Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 1989; 172:156–169.CrossRefPubMedGoogle Scholar
  38. 38.
    Fraser MJ, Smith GE, Summers MD. The acquisition of host cell DNA sequences by baculoviruses: Relation between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella NPVs. J Virology 1983; 47:287–300.PubMedGoogle Scholar
  39. 39.
    Arensburger P, Orsetti J, Kim YJ et al. A new active transposable element, Herves, from the African malaria mosquito Anopheles gambiae. Genetics 2005; 169:697–708.CrossRefPubMedGoogle Scholar
  40. 40.
    Rowan K, Orsetti J, Atkinson PW et al. Tn5 as an insect gene vector. Insect Biochem Mol Biol 2004; 34:695–705.CrossRefPubMedGoogle Scholar
  41. 41.
    Hickman AB, Perez ZN, Zhou L et al. Molecular architecture of a eukaryotic DNA transposase. Nat Struct Mol Biol 2005; 12:715–721.CrossRefPubMedGoogle Scholar
  42. 42.
    Butler MG, Chakraborty SA, Lampe DJ. The N-terminus of Himarl mariner transposase mediates multiple activities during transposition. Genetica 2006; 127:351–366.CrossRefPubMedGoogle Scholar
  43. 43.
    Lampe DJ, Witherspoon DJ, Soto-Adames FN et al. Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Mol Biol Evol 2003; 20:554–562.CrossRefPubMedGoogle Scholar
  44. 44.
    Hard DL, Lohe AR, Lozovskaya ER. Modern thoughts on an ancyent marinere: Function, evolution, regulation. Annu Rev Genet 1997; 31:337–358.CrossRefGoogle Scholar
  45. 45.
    de Almeida LM, Carareto CM. Multiple events of horizontal transfer of the Minos transposable element between Drosophila species. Mol Phylogenet Evol 2005; 35:583–594.CrossRefPubMedGoogle Scholar
  46. 46.
    Arca B, Savakis C. Distribution of the transposable element Minos in the genus Drosophila. Genetica 2000; 108:263–267.CrossRefPubMedGoogle Scholar
  47. 47.
    Zagoraiou L, Drabek D, Alexaki S et al. In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proc Natl Acad Sci USA 2001; 98:11474–11478.CrossRefPubMedGoogle Scholar
  48. 48.
    Sasakura Y, Awazu S, Chiba S et al. Germ-line transgenesis of the Tel /mariner superfamily transposon Minos in Ciona intestinalis. Proc Natl Acad Sci USA 2003; 100:7726–7730.CrossRefPubMedGoogle Scholar
  49. 49.
    Warren WD, Atkinson PW, O’Brochta DA. The Hermes transposable element from the housefly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genetical Res Camb 1994; 64:87–97.Google Scholar
  50. 50.
    Zimowska GJ, Handler AM. Highly conserved piggyBac elements in noctuid species of Lepidoptera. Insect Biochem Mol Biol 2006; 36:421–428.CrossRefPubMedGoogle Scholar
  51. 51.
    Handler AM, McCombs SD. The piggyBac transposon mediates germ-line transformation of the Oriental fruit fly and closely related elements exist in its genome. Insect Molec Biol 2000; 9:605–612.CrossRefGoogle Scholar
  52. 52.
    Xu HF, Xia QY, Liu C et al. Identification and characterization of piggyBac-like elements in the genome of domesticated silkworm, Bombyx mori. Mol Genet Genomics 2006; 276:31–40.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang J, Ren X, Miller TA et al. piggyBac-like elements in the tobacco budworm, Heliothis virescens (Fabricius). Insect Mol Biol 2006; 15:435–443.CrossRefPubMedGoogle Scholar
  54. 54.
    Sarkar A, Sim C, Hong YS et al. Molecular evolutionary analysis of the widespread piggyBac transposon family and related “domesticated” sequences. Mol Genet Genomics 2003; 270:173–180.CrossRefPubMedGoogle Scholar
  55. 55.
    Sarkar A, Collins FH. Eye color genes for selection of transgenic insects. In: Handler AM, James AA, eds. Insect Transgenesis. Boca Raton: CRC, 2000.Google Scholar
  56. 56.
    ffrench-Constant RH, Benedict MQ. Resistance genes as candidates for insect transgenesis. In: Handler AM, James AA, eds. Insect Transgenesis. Boca Raton: CRC Press, 2000.Google Scholar
  57. 57.
    Berghammer AJ, Klingler M, Wimmer EA. A universal marker for transgenic insects. Nature 1999; 402:370.CrossRefPubMedGoogle Scholar
  58. 58.
    Horn C, Wimmer EA. A versatile vector set for animal transgenesis. Dev Genes Evol 2000; 210:630–637.CrossRefPubMedGoogle Scholar
  59. 59.
    Handler AM, Harrell RA. Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Molec Biol 1999; 4:449–458.CrossRefGoogle Scholar
  60. 60.
    Burn TC, Vigoreaux JO, Tobin SL. Alternative 5C actin transcripts are localized in different patterns during Drosophila embryogenesis. Dev Biol 1989; 131:345–355.CrossRefPubMedGoogle Scholar
  61. 61.
    Lee HS, Simon JA, Lis JT. Structure and expression of ubiquitin genes of Drosophila melanogaster. Mol Cell Biol 1988; 8:4727–2735.PubMedGoogle Scholar
  62. 62.
    Handler AM, Harrell RA. Transformation of the Caribbean fruit fly with a piggyBac transposon vector marked with polyubiquitin-regulated GFP. Insect Biochem Mol Biol 2001; 31:199–205.CrossRefPubMedGoogle Scholar
  63. 63.
    Kokoza V, Ahmed A, Wimmer EA et al. Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac[3xP3-EGFP afm]. Insect Biochem Mol Biol 2001; 31:1137–1143.CrossRefPubMedGoogle Scholar
  64. 64.
    Lobo NF, Hua-Van A, Li X et al. Germ line transformation of the yellow fever mosquito, Aedes aegypti, mediated by transpositional insertion of a piggyBac vector. Insect Molec Biol 2002; 11:133–139.CrossRefGoogle Scholar
  65. 65.
    Handler AM. Understanding and improving transgene stability and expression in insects for SIT and conditional lethal release programs. Insect Biochem Mol Biol 2004; 34:121–130.CrossRefPubMedGoogle Scholar
  66. 66.
    Robinson AS, Franz G, Fisher K. Genetic sexing strains in the medfly, Ceratitis capitata: Development, mass rearing and field application. Trends in Entomol 1999; 2:81–104.Google Scholar
  67. 67.
    Wilson C, Bellen HJ, Gehring W. Position effects on eukaryotic gene expression. Ann Rev Cell Biol 1990; 6:679–714.PubMedCrossRefGoogle Scholar
  68. 68.
    Thibault ST, Singer MA, Miyazaki WY et al. P and piggyBac transposons display a complementary insertion spectrum in Drosophila: A multifunctional toolkit to manipulate an insect genome. Nat Genet 2004; 36:283–287.CrossRefPubMedGoogle Scholar
  69. 69.
    Catteruccia F, Godfray HC, Crisanti A. Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 2003; 299:1225–1227.CrossRefPubMedGoogle Scholar
  70. 70.
    Irvin N, Hoddle MS, O’Brochta DA et al. Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proc Natl Acad Sci USA 2004; 101:891–896.CrossRefPubMedGoogle Scholar
  71. 71.
    Allen ML, Berkebile DR, Skoda SR. Postlarval fitness of transgenic strains of Cochliomyia hominivorax (Diptera: Calliphoridae). J Econ Entomol 2004; 97:1181–1185.CrossRefPubMedGoogle Scholar
  72. 72.
    Heinrich JC, Scott MJ. A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA 2000; 97:8229–8232.CrossRefPubMedGoogle Scholar
  73. 73.
    Horn C, Wimmer EA. A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotechnol 2003; 21:64–70.CrossRefPubMedGoogle Scholar
  74. 74.
    Robinson AS, Franz G. The application of transgenic insect technology in the sterile insect technique. In: Handler AM, James AA, eds. Insect Transgenesis: Methods and Applications. Boca Raton: CRC Press LLC, 2000:307–319.Google Scholar
  75. 75.
    Sarkar A, Atapattu A, EJB et al. Insulated piggyBac vectors for insect transgenesis. BMC Biotechnol 2006; 6:27.CrossRefPubMedGoogle Scholar
  76. 76.
    Groth AC, Fish M, Nusse R et al. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 2004; 166:1775–1782.CrossRefPubMedGoogle Scholar
  77. 77.
    Horn C, Handler AM. Site-specific genomic targeting in Drosophila. Proc Natl Acad Sci USA 2005; 102:12483–12488.CrossRefPubMedGoogle Scholar
  78. 78.
    Oberstein A, Pare A, Kaplan L et al. Site-specific transgenesis by Cre mediated recombination in Drosophila. Nat Methods 2005; 2:583–585.CrossRefPubMedGoogle Scholar
  79. 79.
    Rong YS, Golic KG. Gene targeting by homologous recombination in Drosophila. Science 2000; 288:2013–2018.CrossRefPubMedGoogle Scholar
  80. 80.
    Nimmo DD, Alphey L, Meredith JM et al. High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol Biol 2006; 15:129–136.CrossRefPubMedGoogle Scholar
  81. 81.
    Andrews BJ, Proteau GA, Beatty LG et al. The FLP recombinase of the 2 micron circle DNA of yeast: Interaction with its target sequences. Cell 1985; 40:795–803.CrossRefPubMedGoogle Scholar
  82. 82.
    Siegal ML, Hartl DL. Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 1996; 144:715–726.PubMedGoogle Scholar
  83. 83.
    Golic KG, Golic MM. Engineering the Drosophila genome: Chromosome rearrangements by design. Genetics 1996; 144:1693–1711.PubMedGoogle Scholar
  84. 84.
    Golic MM, Rong YS, Petersen RB et al. FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nuc Acid Res 1997; 25:3665–3671.CrossRefGoogle Scholar
  85. 85.
    Handler AM, Zimowska GJ, Horn C. Post-integration stabilization of a transposon vector by terminal sequence deletion in Drosophila melanogaster. Nat Biotechnol 2004; 22:1150–1154.CrossRefPubMedGoogle Scholar
  86. 86.
    Dafa’alla TH, Condon GC, Condon KC et al. Transposon-free insertions for insect genetic engineering. Nat Biotechnol 2006; 24:820–821.CrossRefGoogle Scholar
  87. 87.
    Knipling EF. Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 1955; 48:459–462.Google Scholar
  88. 88.
    Fackenthal JD, Turner FR, Raff EC. Tissue-specific microtubule functions in Drosophila spermatogenesis require the beta 2-tubulin isotype-specific carboxy terminus. Dev Biol 1993; 158:213–227.CrossRefPubMedGoogle Scholar
  89. 89.
    Catteruccia F, Benton JP, Crisanti A. An Anopheles transgenic sexing strain for vector control. Nat Biotechnol 2005; 23:1414–1417.CrossRefPubMedGoogle Scholar
  90. 90.
    Smith RC, Walter MF, Hice RH et al. Testis-specific expression of the β2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker Insect. Mol Biol 2007, (doi: 10.1111/j.l365-2583.2006.00701.x).Google Scholar
  91. 91.
    Furlong EE, Profitt D, Scott MP. Automated sorting of live transgenic embryos. Nat Biotechnol 2001; 19:153–156.CrossRefPubMedGoogle Scholar
  92. 92.
    Gossen M, Bonin AL, Bujard H. Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem Sci 1993; 18:471–475.CrossRefPubMedGoogle Scholar
  93. 93.
    Gossen M, Bujard H. Tight control of gene expresion in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89:5547–5551.CrossRefPubMedGoogle Scholar
  94. 94.
    Abrams JM, White K, Fessier LI et al. Programmed cell death during Drosophila embryogenesis. Development 1993; 117:29–43.PubMedGoogle Scholar
  95. 95.
    Thomas DD, Donnelly RJ, Wood LS et al. Insect population control using a dominant, repressible, lethal genetic system. Science 2000; 287.Google Scholar
  96. 96.
    Gong P, Epton MJ, Fu G et al. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotechnol 2005; 23:453–456.CrossRefPubMedGoogle Scholar
  97. 97.
    Alphey L. Reengineering the sterile insect technique. Insect Biochem Mol Biol 2002; 32:1243–1247.CrossRefPubMedGoogle Scholar
  98. 98.
    Brand AH, Manoukian AS, Perrimon N. Extopic expression in Drosophila. Methods Cell Biol 1994; 44:635–654.CrossRefPubMedGoogle Scholar
  99. 99.
    McGuire SE, Le PT, Osborn AJ et al. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 2003; 302:1765–1768.CrossRefPubMedGoogle Scholar
  100. 100.
    Bellen HJ, D’Evelyn D, Harvey M et al. Isolation of temperature-sensitive diptheria toxins in yeast and their effects on Drosophila cells. Development 1992; 114:787–796.PubMedGoogle Scholar
  101. 101.
    Moffat KG, Gould JH, Smith HK et al. Inducible cell ablation in Drosophila by cold-densitve ricin A chain. Development 1992; 114:681–687.PubMedGoogle Scholar
  102. 102.
    Fryxell KJ, Miller TA. Autocidal biological control: A general strategy for insect control based on genetic transformation with a highly conserved gene. J Econ Entomol 1994; 88:1221–1232.Google Scholar
  103. 103.
    Saville KJ, Belote JM. Identification of an essential gene, l(3)73Ai, with a dominant temperature-sensitive lethal allele, encoding a Drosophila proteasome subunit. Proc Natl Acad Sci USA 1993; 90:8842–8846.CrossRefPubMedGoogle Scholar
  104. 104.
    Covi JA, Belote JM, Mykles DL. Subunit compositions and catalytic properties of proteasomes from developmental temperature sensitive mutants of Drosophila melanogaster. Arch Biochem Biophys 1999; 368:85–97.CrossRefPubMedGoogle Scholar
  105. 105.
    Beard CB, Mason PW, Aksoy S et al. Transformation of an insect symbiont and expression of a foreign gene in the Chagas’s disease vector Rhodnius. Am J Trop Med Hyg 1992; 46:195–200.PubMedGoogle Scholar
  106. 106.
    Durvasula RV, Gumbs A, Panackal A et al. Prevention of insect-borne disease: An approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA 1997; 94:3274–3278.CrossRefPubMedGoogle Scholar
  107. 107.
    Dotson EM, Plikaytis B, Shinnick TM et al. Transformation of Rhodococcus rhodnii, a symbiont of the Chagas disease vector Rhodnius prolixus, with integrative elements of the L1 mycobacteriophage. Infect Genet Evol 2003; 3:103–109.CrossRefPubMedGoogle Scholar
  108. 108.
    Stouthammer R, Breeuwer JA, Hurst GD. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Ann Rev Microbiol 1999; 53:71–102.CrossRefGoogle Scholar
  109. 109.
    Sinkins SP, O’Neill SL. Wolbachia as a vehicle to modify insect populations. In: Handler AM, James AA, eds. Insect Transgenesis: Methods and Applications. Boca Raton: CRC, 2000:271–288.Google Scholar
  110. 110.
    Xi Z, Khoo CC, Dobson SL. Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus. Proc Biol Sci 2006; 273:1317–1322.CrossRefPubMedGoogle Scholar
  111. 111.
    Zabalou S, Riegler M, Theodorakopoulou M et al. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 2004; 101:15042–15045.CrossRefPubMedGoogle Scholar
  112. 112.
    Foy BD, Myles KM, Pierro DJ et al. Development of a new Sindbis virus transducing system and its characterization in three Culicine mosquitoes and two Lepidopteran species. Insect Mol Biol 2004; 13:89–100.CrossRefPubMedGoogle Scholar
  113. 113.
    Ando T, Fujiyuke T, Kawashima T et al. In vivo gene transfer into the honeybee using a nucleopolyhedrovirus vector. Biochem Biophys Res Commun 2007; 352:335–340.CrossRefPubMedGoogle Scholar
  114. 114.
    Carlson JO, Suchman E, Buchatsky L. Densoviruses for control and genetic manipulation of mosquitoes. Adv Virus Res 2006; 68:361–392.CrossRefPubMedGoogle Scholar
  115. 115.
    Jordan TV, Shike V, Boulo V et al. Pantropic retroviral vectors mediate somatic cell transformation and expression of foreign genes in dipteran insects. Insect Mol Biol 1998; 7:215–222.CrossRefPubMedGoogle Scholar
  116. 117.
    James AA. Mosquito molecular genetics: The hands that feed bite back. Science 1992; 257:37–38.CrossRefPubMedGoogle Scholar
  117. 118.
    Miller LH. The challenge of Malaria. Science 1992; 257:36–37.CrossRefPubMedGoogle Scholar
  118. 119.
    Craig GB. Prospects for vector control through manipulation of populations. Bull World Health Organ 1963; 29:89–97.Google Scholar
  119. 120.
    Collins FH, Sakai RK, Vernick KD et al. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 1986; 234:607–610.CrossRefPubMedGoogle Scholar
  120. 121.
    Anxolabehere D, Kai H, Nouaud D et al. The geographical distribution of P-M hybrid dysgenesis in Drosophila melanogaster. Genet Sel Evol 1984; 16:15–26.CrossRefGoogle Scholar
  121. 122.
    Quesneville H, Anxolabehere D. Dynamics of transposable elements in metapopulations: A model of P element invasion in Drosophila. Theor Pop Biol 1998; 54:175–193.CrossRefGoogle Scholar
  122. 123.
    O’Brochta DA, Handler AM. Mobility of P elements in drosophilids and non-drosophilids. Proc Natl Acad sci USA 1988; 85:6052–6056.CrossRefPubMedGoogle Scholar
  123. 124.
    Kidwell MG. Horizontal transfer of P elements and other short inverted repeat transposons. Genetica 1992; 86:275–286.CrossRefPubMedGoogle Scholar
  124. 125.
    Anxolabehere D, Kidwell MG, Periquet G. Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. Mol Biol Evol 1988; 5:252–269.PubMedGoogle Scholar
  125. 126.
    Kidwell MG, Frydryk T, Novy JB. The hybrid dysgenesis potential of Drosophila melanogaster strains of diverse temporal and geographical natural origins. Drosophila Inform. Serv 1983; 51:97–100.Google Scholar
  126. 127.
    Sanchez-Gracia A, Maside X, Charlesworth B. High rate of horizontal transfer of transposable elements in Drosophila. Trends in Genetics 2005; 21:200–2003.CrossRefPubMedGoogle Scholar
  127. 128.
    Guimond N, Bideshi DK, Pinkerton AC et al. Patterns of Hermes Transposition in Drosophila melanogaster. Molec Gen Genet 2003; 268:779–790.Google Scholar
  128. 129.
    Wilson R, Orsetti J, Klocko AD et al. Post-integration behavior of a Mos1 gene vector in Aedes aegypti. Insect Biochem Mol Biol 2003; 33:853–863.CrossRefPubMedGoogle Scholar
  129. 130.
    O’Brochta DA, Sethuraman N, Wilson R et al. Gene vector and transposable element behavior in mosquitoes. J Exp Biol 2003; 206:3823–3834.CrossRefPubMedGoogle Scholar
  130. 131.
    Preston CR, Engels WR. Spread of P transposable elements in inbred lines of Drosophila melanogaster. Prog Nuc Acid Res Molec Biol 1989; 36:71–85.CrossRefGoogle Scholar
  131. 132.
    Galindo MI, Ladeveze V, Lemeunier F et al. Spread of the autonomous transposable element hobo in the genome of Drosophila melanogaster. Mol Biol Evol 1995; 12:723–734.PubMedGoogle Scholar
  132. 133.
    Ladeveze V, Galindo I, Chaminade N et al. Transmission pattern of hobo transposable element in transgenic lines of Drosophila melanogaster. Genet Res Camb 1998; 71:97–107.Google Scholar
  133. 134.
    Kimura K, Kidwell MG. Differences in P element population dynamics between the sibling species Drosophila melanogaster and Drosophila simulans. Genet Res Camb 1994; 63:27–38.Google Scholar
  134. 135.
    Biemont C, Tsitrone A, Vieira C et al. Transposable element distribution in Drosophila. Genetics 1997; 147:1997–1999.PubMedGoogle Scholar
  135. 136.
    Deceliere G, Charles S, Biemont C. The dynamics of transposable elements in structured populations. Genetics 2005; 169:467–474.CrossRefPubMedGoogle Scholar
  136. 137.
    Curtis CF. Possible use of translocations to fix desirable gene in insect pest populations. Nature 1968; 218:368–369.CrossRefPubMedGoogle Scholar
  137. 138.
    Rupprecht CE, Hanlon CA, Slate D. Oral vaccination of wildlife against rabies: Opportunities and challenges in prevention and control. Developments in Biologicals 2004; 119:173–184.PubMedGoogle Scholar
  138. 139.
    Rupprecht CE, Hanlon CA, Slate D. Control and prevention of rabies in animals: Paradigm shifts. Dev Biol (Basel) 2006; 125:103–111.Google Scholar
  139. 140.
    Tsao JI, Wootton JT, Bunikis J et al. An ecological approach to preventing human infection: Vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proc Natl Acad Sci USA 2004; 101:18159–18164.CrossRefPubMedGoogle Scholar
  140. 141.
    Barfield JP, Nieschlag E, Cooper TG. Fertility control in wildlife: Humans as a model. Contraception 2006; 73:6–22.CrossRefPubMedGoogle Scholar
  141. 142.
    Dawe AL, Nuss DL. Hypoviruses and chestnut blight: Exploiting viruses to understand and modulate fungal pathogenesis. Ann Rev Genet 2001; 35:1–29.CrossRefPubMedGoogle Scholar
  142. 143.
    Milgroom MG, Cortesi P. Biological control of chestnut blight with hypovirulence: A critical analysis. Annu Rev Phytopathol 2004; 42:311–338.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2008

Authors and Affiliations

  1. 1.Center for Biosystems ResearchUniversity of Maryland Biotechnology InstituteRockvilleUSA
  2. 2.United States Department of AgricultureAgricultural Research Service Center for Medical, Agricultural and Veterinary EntomologyGainesvilleUSA

Personalised recommendations