Developments in Conjoint Analysis

  • Vithala R. Rao
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 121)


Since the introduction some thirty five years ago of conjoint methods in marketing research (Green and Rao 1971), research on the methodology and applications of conjoint analysis has thrived extremely well. Researchers continue to explore both theoretical issues and problems encountered in practice. Academic research on conjoint methods is quite alive and well. It is not an exaggeration to say that “conjoint analysis is a journey and not a destination”. A recent paper on this topic (Hauser and Rao 2003) reviewed the origins of the methodology, and research approaches used in data collection and estimation. Another paper (Green et al. 2003) reviews issues of how estimates of partworths from conjoint methods can be used to identify market segments, identify high-potential product designs, plan product lines, and estimate sales potential.

My primary focus of this chapter is to review selected recent developments1in conjoint analysis research. I will organize this chapter...


Reservation Price Conjoint Analysis Hierarchical Bayesian Adaptive Conjoint Analysis Conjoint Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alba, J.W., A.D.J. Cooke. 2004., When Absence Begets Inference in Conjoint Analysis. Journal of Marketing Research, 41(November) 382–387.CrossRefGoogle Scholar
  2. Allenby, G.M., N. Arora, J. L. Ginter. 1995. Incorporating Prior Knowledge into the Analysis Of Conjoint Studies. Journal of Marketing Research, 37(May) 152–162.CrossRefGoogle Scholar
  3. Allenby, G.M., P.J. Lenk. 1994. Modeling Household Purchase Behavior with Logistic Normal Regression. Journal of the American Statistical Association, 89(December) 1218–1231.CrossRefGoogle Scholar
  4. Andrews, R.L., A. Ansari, I. Currim. 2002a, Hierarchical Bayes Versus Finite Mixture Conjoint Analysis Models: A Comparison Of Fit, Prediction, And Partworth Recovery. Journal of Marketing Research, 39(February) 87–98.CrossRefGoogle Scholar
  5. Andrews, R.L., A. Ainslie, I. Currim. 2002b, An Empirical Comparison Of Logit Choice Models with Discrete Versus Continuous Representations of Heterogeneity. Journal of Marketing Research, 39(November) 479–487.CrossRefGoogle Scholar
  6. Bass, F. 1969. A New Product Growth Model for Consumer Durables. Management Science, 15(January), 215–227.Google Scholar
  7. Becker, G.M., M.H. DeGroot, J. Marschak.1964. Measuring Utility By A Single-Response Sequential Method. Behavioral Science 9(July), 226–32.CrossRefGoogle Scholar
  8. Bodapati, A. 2006. Personal communication.Google Scholar
  9. Bradlow, E.T. 2005. Current Issues and a ‘wish list’ for Conjoint Analysis. Applied Stochastic Models in Business and Industry 21, 319–323.CrossRefGoogle Scholar
  10. Bradlow, E.T., V.R. Rao. 2000. A Hierarchical Bayes Model For Assortment Choice. Journal of Marketing Research 37(May), 259–268.CrossRefGoogle Scholar
  11. Bradlow, E., Y. Hu, T.-H. Ho. 2004., A Learning-Based Model Fro Imputing Missing Levels in Partial Conjoint Profiles. Journal of Marketing Research 41(November), 369–381.CrossRefGoogle Scholar
  12. Burgess, C.J.C. 1998. A Tutorial On Support Vector Machines For Pattern Recognition. Data Mining and Knowledge Discovery 2 121–167.CrossRefGoogle Scholar
  13. Burgess, L., D. Street. 2003. Optimal Designs for 2^k Choice Experiments. Communications in Statistics: Theory and Methods, 32 (11) 2185–2206.CrossRefGoogle Scholar
  14. Burgess, L., D. Street. 2005. Optimal Designs for Choice Experiments with Asymmetric Attributes. Journal of Statistical Planning and Inference 134 288–301.CrossRefGoogle Scholar
  15. Carroll, J.D., P.E. Green. 1995. Psychometric Methods in Marketing Research: Part I, Conjoint Analysis. Journal of Marketing Research 32(November) 385–391.CrossRefGoogle Scholar
  16. Chung, J., V.R. Rao. 2003. A General Choice Model for Bundles with Multiple Category Products: Application To Market Segmentation and Optimal Pricing for Bundles. Journal of Marketing Research 40(May) 115–130.CrossRefGoogle Scholar
  17. Corstjens, M., D.A. Gautschi. 1983. Formal Choice Models in Marketing. Marketing Science, 2(1), 19–56.CrossRefGoogle Scholar
  18. DeSarbo, W.S., V.R. Rao. 1986. A Constrained Unfolding Methodology For Product Positioning. Marketing Science 5(1) 1–19.CrossRefGoogle Scholar
  19. DeSarbo, W.S., W.M. Vriens, V. Ramaswamy. 1992. Latent Class Metric Conjoint Analysis. Marketing Letters 3(3) 273–288.CrossRefGoogle Scholar
  20. Ding, M.. 2007. An Incentive-Aligned Mechanism For Conjoint Analysis. Journal of Marketing Research 44(May) 214–223.CrossRefGoogle Scholar
  21. Ding, M., R. Agarwal, J. Liechty. 2005. Incentive-Aligned Conjoint Analysis. Journal of Marketing Research 42(February) 67–82.CrossRefGoogle Scholar
  22. Evgeniou, T., C. Boussios, G. Zacharia. 2005. Generalized Robust Conjoint Estimation. Marketing Science 24(3) 415–429.CrossRefGoogle Scholar
  23. Farquhar, P.H.. V.R. Rao. 1976. A Balance Model For Evaluating Subsets of Multiattributed Items. Management Science 22(January) 528–539.CrossRefGoogle Scholar
  24. Gilbride, T.J., G.M. Allenby. 2004. A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules. Marketing Science 23(2) 391–406.Google Scholar
  25. Ghose, S., V.R. Rao. 2007. A Choice Model of Bundles Features and Meta-Attributes: An Application to Product Design. Working paper, Cornell University.Google Scholar
  26. Green, P.E. 1984. A Hybrid Models For Conjoint Analysis: An Expository View. Journal of Marketing Research 21(May) 33–-41.CrossRefGoogle Scholar
  27. Green, P.E., V.R. Rao. 1971. Conjoint Measurement for Quantifying Judgmental Data. Journal of Marketing Research 8(August) 355–363.CrossRefGoogle Scholar
  28. Green, P.E., V. Srinivasan. 1978. Conjoint Analysis in Consumer Research: Issues and Outlook. Journal of Consumer Research 5(September) 103–123.CrossRefGoogle Scholar
  29. Green, P.E., V. Srinivasan. 1990. Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice. Journal of Marketing 54(October) 3–19.CrossRefGoogle Scholar
  30. Green, P. E., A. M. Krieger, M. K. Agarwal. 1991. Adaptive Conjoint Analysis: Some Caveats and Suggestions. Journal of Marketing Research 28(May) 215–222.CrossRefGoogle Scholar
  31. Green, P.E., A. Krieger, T.G. Vavra. 1997. Evaluating New Products. Marketing Research 9(4) 12–19.Google Scholar
  32. Green, P.E., A. Krieger, Y. Wind. 2003. Buyer choice Simulators, Optimizers, and Dynamic Models. Wind Y., Paul E. Green, Marketing Research and Modeling: Progress and Prospects: A Tribute to Paul E. Green. Kluwer Academic Publishers, Norwell, MA.Google Scholar
  33. Green, P.E., Y. Wind, A.K. Jain. 1972. Preference Measurement of Item Collections. Journal of Marketing Research 9(November) 371–377.CrossRefGoogle Scholar
  34. Hauser, J.R.. V.R. Rao. 2003. Conjoint Analysis, Related Modeling, and Applications. Wind, Y., P.E. Green, Marketing Research and Modeling: Progress and Prospects: A Tribute to Paul E. Green, Kluwer Academic Publishers, Norwell, MA.Google Scholar
  35. Hauser, J.R., O. Toubia. 2005. The Impact of Utility Balance and Endogeneity in Conjoint Analysis. Marketing Science, 24(3) 498–507.CrossRefGoogle Scholar
  36. Huber, J., K. Train. 2001. On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths. Marketing Letters 12(3) 259–269.CrossRefGoogle Scholar
  37. Huber, J., K. Zwerina. 1996. On the Importance of Utility Balance in Efficient Designs. Journal of Marketing Research,33(August), 307–317.CrossRefGoogle Scholar
  38. Jedidi, K., Z.J. Zhang. 2002. Augmenting Conjoint Analysis to Estimate Consumer Reservation Price. Management Science, 48(10), 1350–1368.CrossRefGoogle Scholar
  39. Jedidi, K., S. Jagpal, P. Manchanda. 2003. Measuring Heterogeneous Reservation Prices for Product Bundles. Marketing Science 22(1), 107–130.CrossRefGoogle Scholar
  40. Johnson, R.M. 1987. Adaptive Conjoint Analysis. Sawtooth Software Conference on Perceptual Mapping, Conjoint Analysis, and Computer Interviewing. Sawtooth Software, Inc., Ketchum, ID, 253–265.Google Scholar
  41. Johnson, R.M. 1991 Comment on “Adaptive Conjoint Analysis”: Some Caveats and Suggestions. Journal of Marketing Research, 28(May), 223–225.CrossRefGoogle Scholar
  42. Kanninen, B.J. 2002. Optimal Designs For Multinomial Choice Designs. Journal of Marketing Research, 39(May), 214–227.CrossRefGoogle Scholar
  43. Kuhfeld, W.F. 2005. Marketing Research Methods in SAS. Experimental Design, Choice, Conjoint, and Graphical Techniques. SAS 9.1 Edition, TS-722, SAS Institute Inc., Cary, NCGoogle Scholar
  44. Kuhfeld, W.F., R.D. Tobias, and M.Garratt. 1994. Efficient Experimental Designs with Marketing Research Applications. Journal of Marketing Research, 31(November), 545–557.CrossRefGoogle Scholar
  45. Lenk, P.J., W.S. DeSarbo, P.E. Green and M.R. Young. 1996. Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs. Marketing Science 15(2), 173–191.CrossRefGoogle Scholar
  46. Liechty, J., V. Ramaswamy, S. H. Cohen. 2001. Choice Menus for Mass Customization: An Experimental Approach for Analyzing Customer Demand with an Application to a Web-Based Information Service. Journal of Marketing Research, 38(2), 183–196.Google Scholar
  47. Liechty, J.C., D.K.H. Fong and W.S. DeSarbo. 2005. Dynamic Models Incorporating Individual Heterogeneity: Utility Evolution in Conjoint Analysis. Marketing Science 24(2), 285–293.CrossRefGoogle Scholar
  48. Liu, Q., T. Otter, and G.M. Allenby. 2007. Investigating Endogeneity Bias in Marketing. Marketing Science, 26(5), 642–650.Google Scholar
  49. Oded N., V. Srinivasan. 2007. Adaptive-Self Explication of Multi-Attribute Preferences. Working Paper, Stanford, CA: Graduate School of Business, Stanford UniversityGoogle Scholar
  50. Ofek, E. and V. Srinivasan. 2002. How Much Does the Market Value an Improvement in a Product Attribute?. Marketing Science 22(3) 398–411.CrossRefGoogle Scholar
  51. Orme, B. (2006) Getting Started with Conjoint Analysis: Strategies for Product Design and Pricing Research. Research Publishers LLC, Madison, WI.Google Scholar
  52. Park, Y.-H., M. Ding, V.R. Rao. Forthcoming. Eliciting Preference for Complex Products: A Web-Based Upgrading Method. Journal of Marketing Research.Google Scholar
  53. Rao, V.R. 1976. Conjoint Measurement in Marketing Analysis. Sheth, J.N. Multivariate Methods for Market and Survey Research, American Marketing Association.Google Scholar
  54. Rao, V.R., H. Sattler. 2003. Measurement of Price Effects with Conjoint Analysis: Separating Informational and Allocative Effects of Price. Gustafsson, A., A. Herrmann, F. Huber, Conjoint Measurement: Methods and Applications, 3rd edition, Springer, BerlinGoogle Scholar
  55. Rossi, P.E., G.M. Allenby, R. McCulloch. 2005. Bayesian Statistics and Marketing,John Wiley & Sons Ltd., West Sussex, England.CrossRefGoogle Scholar
  56. Sandor, Z., M. Wedel. 2001. Designing Conjoint Choice Experiments using Managers’ Beliefs. Journal of Marketing Research, 38(November) 430–444.CrossRefGoogle Scholar
  57. Sandor, Z., M. Wedel. 2002. Profile Construction in Experimental Choice Designs for Mixed Logit Models. Marketing Science, 21(4) 455–475.CrossRefGoogle Scholar
  58. Srinivasan, V., C.S. Park. 1997. Surprising Robustness of Self-Explicated Approach to Customer Preference Structure Measurement. Journal of Marketing Research, 34(2) 286–291.CrossRefGoogle Scholar
  59. Street, D.J., L. Burgess. 2004. Optimal and Near-Optimal Pairs for the Estimation of Effects in 2-Level Choice Experiments. Journal of Statistical Planning and Inference, 118, 185–199.CrossRefGoogle Scholar
  60. Street, D.S., and L. Burgess. 2007. The Construction of Optimal Stated Choice Experiments: Theory and Methods. Hoboken, NJ: Wiley-Interscience, A John Wiley & Sons, Inc. Publication.Google Scholar
  61. Street, D.J., L. Burgess, J.J. Louviere. 2005. Quick and Easy Choice Sets: Constructing Optimal and nearly Optimal Stated Choice Experiments. International Journal of Research in Marketing, 22 459–470.CrossRefGoogle Scholar
  62. Su, M. V.R. Rao. 2006. A Continuous Conjoint Analysis for Preannounced New products with Evolutional Attributes. Working Paper, Johnson School, Cornell University.Google Scholar
  63. Toubia, O., J.R. Hauser. 2007. On Managerially Efficient Experimental Designs. Marketing Science. 26(6), 850–858.Google Scholar
  64. Toubia, O., J.R. Hauser, D.I. Simester. 2004., Polyhedral Methods for Adaptive Conjoint Analysis. Journal of Marketing Research, 42(February) 116–131.CrossRefGoogle Scholar
  65. Toubia, O., D.I. Simester, J.R. Hauser, E. Dahan. 2003. Fast Polyhedral Adaptive Conjoint Estimation. Marketing Science, 22(3), 273–303.CrossRefGoogle Scholar
  66. Urban, G.L. and J.R. Hauser. 2002. ‘Listening in’ to find consumer needs and solutions, Working Paper, Cambridge, MA: Center for Innovation in Product Development, MIT (February).Google Scholar
  67. Vadali, S., J. Liechty, A. Rangaswamy. 2006. Generalized Hierarchical Bayes Estimation for Polyhedral Conjoint Analysis. Working Paper, Penn State University.Google Scholar
  68. Wertenbroch, K., B. Skiera. 2002. Measuring Consumers’ Willingness to Pay at the Point of Purchase. Journal of Marketing Research, 39(May) 228–241.CrossRefGoogle Scholar
  69. Wind, Y, P.E. Green, D. Shifflet, and M. Scarbrough. 1989. Courtyard by Marriott: Designing a Hotel with Consumer-based marketing. Interfaces, 19(January–February) 25–47.CrossRefGoogle Scholar
  70. Wittink, D.R., P. Cattin. 1989. Commercial Use of Conjoint Analysis: An Update. Journal of Marketing. 53(July), 91–96.CrossRefGoogle Scholar
  71. Wittink, D.R., S.K. Keil. 2003. Continuous Conjoint Analysis. Gustafsson, A., A. Herrmann, F. Huber. Conjoint Measurement Methods and Applications, . 3rd Edition, Springer, New York.Google Scholar
  72. Wittink, D.R., M. Vriens, W. Burhenne. 1994. Commercial Use of Conjoint Analysis in Europe: Results and Critical Reflections. International Journal of Research in Marketing, 11 41–52.CrossRefGoogle Scholar
  73. Yee, M., E. Dahan, J.R. Hauser, J. Orlin. 2005. Greedoid-Based Noncompensatory Inference. Marketing Science 26 532–549.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations