Advertisement

Cancer Risk Factors

  • K.G. Manton
  • Igor Akushevich
  • Julia Kravchenko
Part of the Statistics for Biology and Health book series (SBH)

Overview of Cancer Risk Factors

Cancer has a complex etiology with multiple risk factors: the most accurate assessment of an individual’s risk for developing cancer would be an estimate of behavioral and environmental exposures, together with an information on interindividual differences in genetic/epigenetic host susceptibility (including inheritable variations in carcinogen-metabolizing enzymes, germline mutations in tumor-associated genes, and inherited differences in DNA adduct formation and DNA repair mechanisms). The data on lifestyle factors (diet, exercise, smoking, etc.) can be collected and interpreted with some degree of confidence, but genetic assessments for most individuals are not readily available at present.

Biomarkers

Biomarkers are indicators of events for physiological, cellular, subcellular, and molecular alterations in the multistage development of specific diseases. The development of disease resulting from exposure to an environmental agent or other toxic...

Keywords

Cancer Risk Thyroid Cancer Thyroid Carcinoma Ionize Radiation PBPK Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aggarwal B.B., Shishodia S., 2006. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71(10):1397–1421.Google Scholar
  2. Ahlbom A., Green A., Kheifets L. et al., 2004. Epidemiology of health effects on radiofrequency exposure. Environ Health Perspect 112(14):1741–1754.Google Scholar
  3. Ames B.N., Gold L.S., 1991. Endogenous mutagens and the causes of aging and cancer. Mutat Res 250:3–16.Google Scholar
  4. Ames B.N., Magaw R., Gold L.S., 1987. Ranking possible carcinogenic hazards. Science 236:271–280.Google Scholar
  5. Artandi S.E., Chang S., Lee S.L. et al., 2000. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645.Google Scholar
  6. Baker J.R., Fosso C.K., 1993. Immunological aspects of cancers arising from thyroid follicular cells. Endocr Rev 14(6):729–746.Google Scholar
  7. Balan V.E., 1995. Epidemiology of the climacteric period in a large city. Akush Ginekol (Mosk). 3:25–28.Google Scholar
  8. Ballarin C., Sarto F., Giacomelli L. et al., 1992. Micronucleated cells in nasal mucosa of formaldehyde-exposed workers. Mutation Res 280:1–7.Google Scholar
  9. Ballarino F., Ottolenghi A., 2002. Low-dose radiation action: possible implications of bystander effects and adaptive response. J Radiol Prot 22:A39–A42.Google Scholar
  10. Balonov M.I., Zvonova I.F., Bratilova A.A. et al., 2002. Mean thyroid doses for inhabitants of different age, living in 1986 in settlements of Bryansk, Tula, Orel and Kaluga oblasts, contaminated by radionuclides as a result of the Chernobyl accident. Radiation and Risk. Special issue (in Russian)Google Scholar
  11. Barrett J.C., Vainio H., Peakall D., Goldstein B.D., 1997. Susceptibility to environmental hazards. 12th meeting of the scientific group on methodologies for the safety evaluation of chemicals. Environ Health Perspect 105 (Suppl 4):699–737.Google Scholar
  12. Begg C.B., Mazumdar M., 1994. Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101.MATHGoogle Scholar
  13. Bennett C.B., Lewis L.K., Karthikeyan G., Lobachev K.S., Jin Y.H., Sterling J.F., Snipe J.R., Resnick M.A., 2001. Genes required for ionizing radiation resistance in yeast. Nat Genet 29:426–434.Google Scholar
  14. Beral V., 2003. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362(9382):419–427.Google Scholar
  15. Berrington de Gonzalez A., Sweetland S., Green J., 2004. Comparison of risk factors for squamous cell and adenocarcinomas of the cervix: a meta-analysis. Br J Cancer 90(90):1787–1791.Google Scholar
  16. Bhatia S., Meadows A.T., Robison L.L., 1998. Second cancers after pediatric Hodgkin’s disease. J Clin Oncol 16(7):2570–2572.Google Scholar
  17. Bingham S., 2005. Diet and cancer. In: Nutrigenomics. Report of a Workshop Organized by the Public Health Genetics Unit. The Nuffield Trust.Google Scholar
  18. Bisi H., Fernandes V.S., deCamargo R.Y.A., Koch L., Abdo A.H., deBrito T., 1989. The prevalence of unsuspected thyroid pathology in 300 sequential autopsies with special references to the incidental carcinoma. Cancer 64:1888–1893.Google Scholar
  19. Boffetta P., Trendaniel J., Greco A., 2000. Risk of childhood cancer and adult lung cancer after childhood exposure to passive smoke: a meta-analysis. Environ Health Perspect 108(1):73–82.Google Scholar
  20. Bois F.Y., 1999. Analysis of PBPK models for risk characterization. Ann NY Acad Sci 895:317–337.Google Scholar
  21. Bois F.Y., Krowech G., Zeise L., 1995. Modeling interindividual variability in metabolism and risk: the example of 4-aminobiphenyl. Risk Anal 15:205–213.Google Scholar
  22. Braun M.M., Caporaso N.E., Page W.F., Hoover R.N., 1995. A cohort study of twins and cancer. Cancer Epidemiol Biomark Prev 4:469–473.Google Scholar
  23. Brouwer I.A., Katan M.B., Zock P.L., 2004. Dietary alpha-linolenic acid is associated with reduced risk of fatal coronary heart disease, but increased prostate cancer risk: a meta-analysis. J Nutr 134(4):919–922.Google Scholar
  24. Brownson R.C., Novotny T.E., Perry M.C., 1993. Cigarette smoking and adult leukemia. A meta-analysis. Arch Intern Mad 153(4):425–427.Google Scholar
  25. Buckley J.D., Buckley C.M., Breslow N.E., Draper G.J., Roberson P.K., Mack T.M., 1996. Concordance for childhood cancer in twins. Med Pediatr Oncol 26:223–229.Google Scholar
  26. Buja A., Lange J.H., Perissinotto E., Rausa G., Grigoletto F., Canova C., Mastrangelo G., 2005. Cancer incidence among male military and civil pilots and flight attendants: an analysis on published data. Toxicol Ind Health 21(10):273–282.Google Scholar
  27. Buja A., Mastrangelo G., Perissinotto E. et al., 2006. Cancer incidence among female flight attendants: a meta-analysis of published data. J Womens Health 15(1):98–105.Google Scholar
  28. Butterworth B.E., Conolly R.B., Morgan K.T., 1995. A strategy for establishing mode of action of chemical carcinogens as a guide for approaches to risk assessment. Cancer Lett 93:129–146.Google Scholar
  29. Cancer Facts and Figures, 2006. American Cancer Society. www.cancer.org/downloads/STT/CAFF2006PWSecured.pdf
  30. Cappelleri J.C., Ioannidis J.P., Schmid C.H. et al., 1996. Large trial versus meta-analysis of smaller trials: how do their results compare? JAMA 276:1332–1338.Google Scholar
  31. Carmella S.G., Akerkar S.A., Richie J.P., Hecht S.S., 1995. Intraindividual and interindividual differences in metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NKK) in smokers’ urine. Cancer Epidemiol Biomarkers Prev 4:35–62.Google Scholar
  32. Carmelli D., Page W.F., 1996. Twenty-four year mortality in World War II U.S. male veteran twins discordant for cigarette smoking. Int J Epidemiol 1996; 25:554–713.Google Scholar
  33. Carretero-Pelaez M.A., Esparza-Gmez G.C., Figuero-Ruiz E., Cerero-Lapiedra R., 2004. Alcohol-containing mouthwashes and oral cancer. Critical analysis of literature. Med Oral 9:116–123.Google Scholar
  34. Castronovo F.P., 1987. Iodine-131 thyroid uptake results in travelers returning from Europe after the Chernobyl accident. J Nucl Med 28:535–541.Google Scholar
  35. Chen J., Giovannucci E., Hankinson S.E., Ma J., Willett W.C., Spiegelman D., Kelsey K.T., Hunter D.J., 1998. A prospective study of methylenetetrahydrofolate reductase and methionine synthase gene polymorphisms, and risk of colorectal adenoma. Carcinogenesis 19:2129–2132.Google Scholar
  36. Chen K., Qiu J-L., Zhang Y., Zhao Y-W., 2003. Meta analysis of risk factors for colorectal cancer. World J Gastroenterol 9(7):1598–1600.Google Scholar
  37. Cho E., Smith-Warner S.A., Ritz J., van den Brandt P.A., Colditz G.A. et al., 2004. Alcohol intake and colorectal cancer: a pooled analysis of 8 cohort studies. Ann Intern Med 140(8):603–613.Google Scholar
  38. Christensen H.C., Schuz J., Koslejanetz M et al., 2005. Cellular telephones and risk for brain tumors: a population-based, incident case–control study. Neurology 64(7):1189–1195.Google Scholar
  39. D’Errico A., Taioli E., Chen X., Vineis P, 1996. Genetic metabolic polymorphisms and the risk of cancer: a review of the literature. Biomarkers 1:149–173.Google Scholar
  40. Dagnelie P.C., Schuurman A.G., Goldbohm R.A., Van den Brandt P.A., 2004. Diet, anthropometric measures and prostate cancer risk: a review of prospective cohort and intervention studies. BJU Int 93(8):1139–1150.Google Scholar
  41. Dai Z., Xu Y.C., Niu L., 2007. Obesity and colorectal cancer risk: a meta-analysis of cohort studies. World J Gastroenterol 13(31):4199–4206.Google Scholar
  42. Darbre P.D., Aljarrah A., Miller W.R. et al., 2004. Concentrations of parabens in human breast tumors. J Appl Toxicol 24:5–13.Google Scholar
  43. Davis C., Milner J., 2004. Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mutat Res 551:51–64.Google Scholar
  44. Dendy P.P., Brugmans M.J.P., 2003. Low dose radiation risks. Br J Radiobiol 76:674–677.Google Scholar
  45. DePinho R.A., 2000. The age of cancer. Nature 408(9):248–254.Google Scholar
  46. Deswal A., Petersen N.J., Feldman A.M. et al., 2001. Cytokines and cytokine receptors in advanced heart failure. An analysis of the cytokine database from the Vesnarinone Trial (VEST). Circulation 24:2055–2059.Google Scholar
  47. Diez O., Brunet J., Sanz J., del Rio E., Alonso M.C., Baiget M., 1997. Differences in phenotypic expression of a new BRCA1 mutation in identical twins. Lancet 350:713.Google Scholar
  48. Doll R., Peto R., 1981. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66(6):1191–1308.Google Scholar
  49. Egger M., Smith G.D., 1995. Misleading meta-analysis. Lessons from “an effective, safe, simple” intervention that wasn’t. BMJ 310:752–754.Google Scholar
  50. Egger M., Smith G.D., Schneider M., Minder C., 1997. Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634.Google Scholar
  51. EGH, 2006. Health effects of the Chernobyl accident and special health care programmes. Report of the UN Chernobyl Forum Expert Group “Health” (EGH), working draft, 2005. Edited – January 2006.Google Scholar
  52. Ellison R.C., Zhang Y., McLennen C.E., Rothman K.J., 2001. Exploring the relation of alcohol consumption to risk of breast cancer. Am J Epidemiol 154(8):740–747.Google Scholar
  53. Erren T.C., 2001. A meta-analysis of epidemiologic studies of electric and magnetic fields and breast cancer in women and men. Bioelectromagnetics, suppl 5:S105–S119.Google Scholar
  54. Eysenck H.J., 1994. Meta-analysis and its problems. BMJ 309:789–792.Google Scholar
  55. Fan A.M., Howd R.A., 2001. Quantative cancer risk assessment of non-genotoxic carcinogens. In: Genetic Toxicology and Cancer Risk Assessment. Choy W.H. (Ed). New-York, Basel: Marcel Dekker, Inc.Google Scholar
  56. Feychting M., Schulgen G., Olsen J.H., Ahlbom A., 1995. Magnetic fields and childhood cancer – a pooled analysis of two Scandinavian studies. Eur J Cancer 31A(12):2035–2039.Google Scholar
  57. Fjalling M., Tisell L.E., Carlsson S., Hansson G., Lundberg L.M., Oden A., 1986. Benign and malignant nodules after neck irradiation. Cancer 58, 1219–1224.Google Scholar
  58. Freudenheim J.L., Ritz J., Smith-Warner S.A., Albanes D., Bandera E.V., van den Brabdt P.A. et al., 2005. Alcohol consumption and risk of lung cancer: a pooled analysis of cohort studies. Am J Clin Nutr 82(3):495–496.Google Scholar
  59. Gallicchio L., McSorley M.A., Newschaffer C.J., Thuita L.W., Argani P., Hoffman S.C., Helzlsouer K.J., 2006. Flame-broiled food, NAT2 acetylator phenotype, and breast cancer risk among women with benign breast disease. Breast Cancer Res Treat Mar 16.Google Scholar
  60. Gandini S., Botteri E., Iodice S. et al., 2008. Tobacco smoking and cancer: a meta-analysis. Int J Cancer 122(1):155–164.Google Scholar
  61. Gao X., LaValley M.P., Tucker K.L., 2005. Prospective studies of dairy product and calcium intakes and prostate cancer risk: a meta-analysis. J Natl Cancer Inst 97(23):1768–1777.Google Scholar
  62. Gavrilin I.I., Gordeev K.I., Ivanov V.K. et al., 1992. Characteristics and results of the determination of the doses of internal irradiation of the thyroid gland in the population of contaminated districts of the Byelorussian Republic. Vestnik Akad Medicinsk Nauk 2:35–43.Google Scholar
  63. Gilbert E.S., Tarone R., Bouville A., Ron E., 1998. Thyroid cancer rates and I-131 doses from Nevada atmospheric nuclear bomb tests. J Natl Cancer Inst 1998 Nov 90:1654–1660.Google Scholar
  64. Gonzalez C.A., Jakszyn P., Pera G., Agudo A., et al., 2006. Meat intake and risk of stomach and esophageal adenocarcinoma within the European Prospective Investigation Into Cancer and Nutrition (EPIC). J Natl Cancer Inst 98(5):345–54.Google Scholar
  65. Gorham E.D., Mohr S.B., Garland C.F. et al., 2007. Do sunscreens increase risk of melanoma in populations residing at higher latitudes? Ann Epidemiol 17(12):956–963.Google Scholar
  66. Greiser C.M., Greiser E.M., Doren M., 2007. Menopausal hormone therapy and risk of ovarian cancer: systematic review and meta-analysis. Hum Reprod Update 13(5):453–463.Google Scholar
  67. Hampel H., Abraham N.S., El-Serag H.B., 2005. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Ann Intern Med 143(3):199–211.Google Scholar
  68. Harach H.R., Williams E.D., 1995. Childhood thyroid cancer in England and Wales. Br J Cancer 72:777–783.Google Scholar
  69. Harbord R.M., Egger M., Sterne J.A.C., 2005. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 25:3443–3457.Google Scholar
  70. Harvard Report on Cancer Prevention, 1996. Cancer Causes Control vol. 7 (suppl. November), ISSN 0957-5243. At: www.hsph.harvard.edu/cancer/resources_materials/reports/HCCPreport_1summary.htm
  71. Harvey P.W., Everett D.J., 2004. Significance of the detection of esters of p-hydrobenzoic acid (parabens) in human breast tumors. J Appl Toxicol 24:1–4.Google Scholar
  72. Heidenreich W.F., Kenigsberg J., Jacob P., Buglova E., Goulko G., Paretzke H.G., Demidchik E.P., Golovneva A., 1999. Time trends of thyroid cancer incidence in Belarus after the Chernobyl accident. Radiat Res 151:617–625.Google Scholar
  73. Higginson J., Muir C.S., 1977. Determination del’importance des facteurs environnementaux dans le cancer human: role de l’epidemilogie. Bull Cancer 64:365–384.Google Scholar
  74. Higginson J., Muir C.S., 1979. Environmental carcinogenesis: misconceptions and limitations to cancer control. J Natl Cancer Inst 63:1291–1298.Google Scholar
  75. Hjalgrim L.L., Westergaard T., Rostgaard K., Schmiegelow K., Melbye M., Engels E.A., 2003. Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies. Am J Epidemiol 158(8):724–35.Google Scholar
  76. Hoover R.N., 2000. Cancer: nature, nurture, or borth. Editorial N Engl J Med 343(2).Google Scholar
  77. Hougeir F.G., Yiannias J.A., Hinni M.L., Hentz J.G., El-Azhary R.A., 2006. Oral metal contact allergy: a pilot study on the cause of oral squamous cell carcinoma. Int J Dermatol 45(3):265–71.Google Scholar
  78. Huncharek M., Kupelnick B., Klassen H., 2001. Paternal smoking during pregnancy and the risk of childhood brain tumors: results of a meta-analysis. In Vivo 15(6):535–541.Google Scholar
  79. Huncharek M., Kupelnick B., Wheeler L., 2003. Dietary cured meat and the risk of adult glioma: a meta-analysis of nine observational studies. J Environ Pathol Toxicol Oncol 22(2):129–37.Google Scholar
  80. Huncharek M., Kupelnick B., 2004. A meta-analysis of maternal cured meat consumption during pregnancy and the risk of childhood brain tumors. Neuroepidemiology 23(1–2):78–84.Google Scholar
  81. Hunter D.J., Spiegelman D., Adami H.O., Beeson L., van den Brandt P.A., Folsom A.R., Fraser G.E., Goldbohm R.A., Graham S., Howe G.R. et al., 1996. Cohort studies of fat intake and the risk of breast cancer – a pooled analysis. N Eng J Med 334(6):356–61.Google Scholar
  82. Iampol’skaia I., 1997. Dynamics of puberty levels in girls of Moscow. Gin Sanit 3:29–30.Google Scholar
  83. IARC Monographs, A. Volumes 1–99. Group 1: Carcinogenic to humans (105). Agents and groups of agents. At: monographs.iarc.fr/ENG/Classification/crthgr01.php
  84. IARC Monographs, B. Volumes 1–99. Group 2A:Probably carcinogenic to humans (66). Agents and groups of agents. At: monographs.iarc.fr/ENG/Classification/crthgr02.php
  85. Ilyin L.A., Balonov M.I., Buldakov L.A. et al., 1990. Radio-contamination patterns and possible health consequences of the accident at the Chernobyl nuclear power station. J Radiol Prot 10:3–29.Google Scholar
  86. International Programme on Chemical Safety, 1993. Biomarkers and Risk Assessment: Concepts and Principles. In: World Health Organization, ed. Environmental Health Criteria 155:3–40.Google Scholar
  87. Ioannidis J.P.A., Cappelleri J.C., Lau J., et al., 1998. Meta-analyses and large randomized controlled trials. NEJM 338:59.Google Scholar
  88. Ivanov V.K., Manton K.G., Akushevich I. et al., 2005. Risk of thyroid cancer after irradiation in children and adults. Curr Oncol 12(2):55–64.Google Scholar
  89. Ivanov V.K., Tsyb A.F., Gorsky A.I. et al., 1997. Leukemia and thyroid cancer in emergency workers of the Chernobyl accident: estimation of radiation risks (1986–1995). Radiat Environ Biophys 36:9–16.Google Scholar
  90. Jackson A.L., Loeb L.A., 1998. The mutation rate and cancer. Genetics 148:1483–1490.Google Scholar
  91. Jacobs J.R., Bovasso G.B., 2000. Early and chronic stress and their relation to breast cancer. Psychol Med 30(3):669–678.Google Scholar
  92. Jaklic B.R., Rushin J., Ghosh B.C., 1995. Estrogen and progesterone receptors in thyroid lesions. Ann Surg Oncol 2(5):429–434.Google Scholar
  93. Juni P., Holenstein F., Sterne J., et al., 2002. Direction and impact of language bias in meta-analyses of controlled trials: empirical study. Int J Epidemiol 31:115–123.Google Scholar
  94. Junien C., Gallou C., 2004. Cancer nutrigenomics. In: Nutrigenetics and Nutrigenomics. Simopoulos A.P., Ordovas J.M. (Eds.). World Rev Diet. Basel: Karger 93:210–269.Google Scholar
  95. Kai M., Luebeck E.G., Moolgavkar S.H., 1997. Analysis of the incidence of solid cancer among atomic bomb survivors using a two-stage model of carcinogenesis. Radiat Res 148:348–358.Google Scholar
  96. Kehlen A., Englert N., Seifert A. et al., 2004. Expression, regulation and function of autotaxin in thyroid carcinomas. Int J Cancer 109:833–838.Google Scholar
  97. Kelly H., 2002. Testimony of Dr. Henry Kelly, President Federation of American Scientists, before the Senate Committee on Foreign Relations. At: www.fas.org/ssp/docs/030602-kellytestimony.htm
  98. Kendall M.G., Gobbons J.D., 1990. Rank Correlation Methods (5th edition). London: Arnold.MATHGoogle Scholar
  99. Khuder S.A., Mutgi A.B., Nugent S., 2001. Smoking and breast cancer: a meta-analysis. Rev Environ Health 16(4):253–261.Google Scholar
  100. Kingsmore S.F., Patel D.D., 2003 Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification. Curr Opin Biotechnol 14:74–81.Google Scholar
  101. Kodama K., Mabuchi K., Shigematsu I., 1996. A long-term cohort study of the atomic bomb survivors. J Epidemiol 6:S95–S105.Google Scholar
  102. Koizumi Y., Tsubono Y., Nakaya N., Kuriyama S., Shibuya D., Matsuoka H., Tsuji I., 2004. Cigarette smoking and the risk of gastric cancer: a pooled analysis of two prospective studies in Japan. Int J Cancer 112(6):1049–1055.Google Scholar
  103. Korte J.E., Brennan P., Henley S.J., Boffetta P., 2002. Dose-specific meta-analysis and sensitivity analysis of the relation between alcohol consumption and lung cancer risk. Am J Epidemiol 155(6):496–506.Google Scholar
  104. Lacey J.V. Jr., Mink P.J., Lubin J.H. et al., 2002. Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA 288(3):334–341.Google Scholar
  105. Lahat Sheinfeld M., Sobel E., Kinarty A., Kraiem Z., 1992 Divergent effects of cytokines on human leukocyte antigen-DR antigen expression of neoplastic and non-neoplastic human thyroid cells. Cancer 69:1799–1807.Google Scholar
  106. Lang N.P., Butler M.A., Massengill J., Lawson M. et al., 1994. Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Cancer Epidemiol Biomarkers Prev 3:675–682.Google Scholar
  107. Larsson S.C., Wolk A., 2007a. Obesity and colon and rectal cancer risk: a meta-analysis of prospective studies. Am J Clin Nutr 86(3):556–565.Google Scholar
  108. Larsson S.C., Wolk A., 2007b. Overweight, obesity and risk of liver cancer: A meta-analysis of cohort studies. Br J Cancer 97(7):1005–1008.Google Scholar
  109. Last J.M., 1995. A Dictionary of Epidemiology, 3rd edition. Oxford: Oxford University Press.Google Scholar
  110. Lau J., Ioannidis J.P.A., Schmid H.C., Gregoire G., Benhaddad A. et al., 1998. Summing up evidence: one answer is not always enough. Lancet 351:123–127.Google Scholar
  111. Leenhouts H.P., Brugmans M.J., Chadwick K.H., 2000. Analysis of thyroid cancer data from the Ukrainian after Chernobyl using a two-mutation carcinogenesis model. Radiat Environ Biophys 2000 Jun 39:89–98.Google Scholar
  112. LeLorier J., Gregoire G., Benhaddad A., et al., 1997. Discrepancies between meta-analyses and subsequent large randomized controlled trials. NEJ 337:536–542.Google Scholar
  113. Lewis S.J., Smith G.D., 2005. Alcohol, ALDH2, and esophageal cancer: a meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach. Cancer Epidemiol Biomarkers Prev 14(8):1967–1971.Google Scholar
  114. Lichtenstein P., Holm H.V., Verkasalo P.K. et al., 2000. Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85.Google Scholar
  115. Living with radiation, 1998. The National Radiological Protection Board. 5th edition. 70 pp.Google Scholar
  116. Loeb L.A., 1991. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079.Google Scholar
  117. Loeb L.A., 2001. A mutator phenotype in cancer. Cancer Res 61:3230–3239.Google Scholar
  118. Longnecker M.P., Orza M.J., Adams M.E., Vioque J., Chalmers T.C., 1990. A meta-analysis of alcoholic beverage consumption in relation to risk of colorectal cancer. Cancer Causes Control 1(1):59–68.Google Scholar
  119. Lonn S., Ahlbom A., Hall P., Feychting M., 2004. Mobile phone use and the risk of acoustic neuroma. Epidemiology 15(6):653–659.Google Scholar
  120. Lubin J.H., Caporaso N.E., 2006. Cigarette smoking and lung cancer: modeling total exposure and intensity. Cancer Epidemiol Biomarkers Prev 15(3):517–23.Google Scholar
  121. Lutz W.K., 2001. Dose-response relationships in chemical carcinogenesis and cancer risk assessment. In: Genetic Toxicology and Cancer Risk Assessment. Choy W.H. (Ed.). New York, Basel: Marcel Dekker, Inc.Google Scholar
  122. Malone J., Unger J., Delange F. et al., 1991. Thyroid consequences of Chernobyl accident in the countries of the European community. J Endocrinol Invest 14:701–717.Google Scholar
  123. Manole D., Schildknecht B., Gosnell B. et al., 2001. Estrogen promotes growth of human thyroid tumor cells by different molecular mechanisms. J Clin Endocrinol Metab 86(3):1072–1077.Google Scholar
  124. Manton K.G., Stallard E., 1988. Chronic Disease Risk Modeling: Measurement and Evaluation of the Risks of Chronic Disease Processes. In the Griffin Series of the Biomathematics of Diseases, London, England: Charles Griffin Limited.Google Scholar
  125. Manton K.G., Stallard E., Singer B.H., 1992. Projecting the future size and health status of the U.S. elderly population. Int J Forecast 8:433–458.Google Scholar
  126. Manton K.G., Woodbury M.A., Stallard E., Riggan W.B., Creason J.P., Pellom A.C., 1989. Empirical Bayes procedures for stabilizing maps of U.S. cancer mortality rates. J Am Stat Ass 84: 637–650.Google Scholar
  127. Manton K.G., Yashin A.I., 2000. Mechanisms of Aging and Mortality: Searches for New Paradigms. Monographs on Population Aging. 7. Odense, Denmark: Odense University Press.Google Scholar
  128. Mathers J., 2005. The science of nutrigenomics. In: Nutrigenomics. Report of a Workshop Organized by the Public Health Genetics Unit. The Nuffield Trust.Google Scholar
  129. McGrath K.G., 2003. An earlier age of breast cancer diagnosis related to more frequent use of antiperspirants/deodorants and underarm shaving. Eur J Cancer Prev 12(6):479–485.Google Scholar
  130. Megdal S.P., Kroenke C.H., Laden F., Pukkala E., Schernhammer E.S., 2005. Night work and breast cancer risk: a systematic review and meta-analysis. Eur J Cancer 41(13):2023–2032.Google Scholar
  131. Merhi M., Raynal H., Cahuzac E et al., 2007. Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of case–control studies. Cancer Causes Control 18(10):1209–1226.Google Scholar
  132. Michos A., Xue F., Michels K.B., 2007. Birth weight and the risk of testicular cancer: a meta-analysis. Int J Cancer 121(5):1123–1131.Google Scholar
  133. Milner J., 2004. Molecular targets for bioactive food components. J Nutr 134:2492S–2498S.Google Scholar
  134. Minamoto T., Mai M., Ronai Z., 1999. Environmental factors as regulators and effectors of multi-step carcinogenesis. Carcinogenesis 20(4):519–527.Google Scholar
  135. Missmer S.A., Smith-Warner S.A., Spiegelman D., Yaun S.S., Adami H.O. et al., 2002. Meat and dairy food consumption and breast cancer: a pooled analysis of cohort studies. Int J Epidemiol 31(1):78–85.Google Scholar
  136. Moghaddam A.A., Woodward M., Huxley R., 2007. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomarkers Prev 16(12):2533–2547.Google Scholar
  137. Mothersill C., Seymour C., 2001. Radiation-induced bystander effects: past history and future directions. Rad Res 155:759–767.Google Scholar
  138. Murdoch D.J., Krewski D., 1988. Carcinogenic risk assessment with time-dependent exposure patterns. Risk Anal 8:521–530.Google Scholar
  139. Muscat J.E., Malkin M.G., Thompson S. et al., 2000. Handheld cellular telephone use and risk of brain cancer. JAMA 284(23):3001–3007.Google Scholar
  140. National Cancer Institute, Acrylamide in Foods. Fact Sheet. www.nci.nih.gov/cancertopics/factsheet/acrylamideinfoods
  141. National Cancer Institute, Antiperspirants/Deodorants and Breast Cancer: Questions and Answers. www.cancer.gov/cancertopics/factsheet/Risk/AP-Deo
  142. National Cancer Institute, Artificial Sweeteners and Cancer. Questions and Answers. www.nci.nih.gov/cancertopics/factsheet/Risk/artificial-sweeteners
  143. National Cancer Institute, Cellular Telephone Use and Cancer: Questions and Answers. www.cancer.gov/cancertopics/factsheet/Risk/cellphones
  144. National Cancer Institute, Heterocyclic Amines in Cooked Meats www.nci.nih.gov/cancertopics/factsheet/Risk/heterocyclic-amines
  145. National Cancer Institute, Radon and Cancer: Questions and Answers. www.cancer.gov/cancertopics/factsheet/Risk/radon
  146. National Research Council BEIR V, 1990. Committee on the Biological Effects of Ionizing Radiation. Health Effects of Exposure to Low Levels of Ionizing Radiation. Washington D.C.: National Academy Press.Google Scholar
  147. National Research Council Committee on Biological Markers, 1987. Biologic markers in environmental health research. Environ Health Perspect 74:3–9.Google Scholar
  148. Naylor D.C., 1997. Meta-analysis and the meta-epidemiology of clinical research. BMJ 315:617–619.Google Scholar
  149. NEA (Nuclear Energy Agency) Report, 2002. Chernobyl: Assessment of Radiological and Health Impact. 2002 Update of Chernobyl: Ten years on. www.nea.fr/html/rp/chernobyl/c03.html
  150. Nekolla E.A., Kellerer A.M., Kuse-Isingschulte M., Eder E., Spiess H., 1999. Malignancies in patients treated with high doses of radium-224. Radiat Res 152 (suppl 6):S3–S7.Google Scholar
  151. Nguyen L.T., Ramanathan M., Weinstock-Guttman B. et al., 2003. Sex differences in vitro pro-inflammatory cytokine production from peripheral blood of multiple sclerosis patients. J Neurol Sci 209(1–2):93–99.Google Scholar
  152. Norat T., Lukanova A., Ferrari P., Riboli E., 2002. Meat consumption and colorectal cancer risk: dose-response meta-analysis of epidemiological studies. Int J Cancer 98(2):241–56.Google Scholar
  153. Norppa H., Luomahaara S., Heikanen H., Roth S., Sorsa M., Renzi L., Lindholm C., 1993. Micronucleus assay in lymphocytes as a toll to biomonitor human exposure to aneuploidogens and clastogens. Environ Health Perspect 101 (suppl 3):139–143.Google Scholar
  154. Pacifici R., Rifas L., McCraken R. et al., 1989. Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte Il-1 release. Proc. Natl Acad Sci. USA 86(7):2398–2402.Google Scholar
  155. Penta J.S., Johnson F.M., Wachsman J.T., Copeland W.C., 2001. Mitochondrial DNA in human malignancy. Mutat Res 488:119–133.Google Scholar
  156. Plummer M., Herrero R., Franceschi S., Meijer C.J., Snijders P., Bosch F.X., de Sanjose S., Munoz N., IARC Multi-centre Cervical Cancer Study Group, 2003. Smoking and cervical cancer: pooled analysis of the IARC multi-centric case–control study. Cancer causes Control 14(9):805–14.Google Scholar
  157. Preston D.L., Shimizu Y., Pierce D.A., Suyama A., Mabuchi K., 2003. Life Span Study Report 13. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and non-cancer disease mortality: 1950–1997. Radiat Res 160(4):381–407.Google Scholar
  158. Qin L.Q., Xu J.Y., Wang P.Y. et al., 2007. Milk consumption is a risk factor for prostate cancer in Western countries: evidence from cohort studies. Asia Pac J Clin Nutr 16(3):467–476.Google Scholar
  159. Qin L.Q., Xu J.Y., Wang P.Y., Kaneko T., Hochi K., Sato A., 2004. Milk consumption is a risk factor for prostate cancer: meta-analysis of case–control studies. Nutr Cancer 48(1):22–7.Google Scholar
  160. Ramzaev P.B., Balonov M.I., Zvonova I.F. et al., 2000. Methodology for reconstruction of thyroid doses from iodine radioisotopes in residents of the Russian Federation exposed to radioactive contamination as a result of the Chernobyl accident in 1986 [Russian]. Moscow: Russian Ministry of Public Health. [Guideline MU-2.6.1000-00].Google Scholar
  161. Reid F.D., Mercer P.M., Harrison M., Bates T., 1996. Cholecystectomy as a risk factor for colorectal cancer: a meta-analysis. Scand J Gastroenterol 31(2):160–169.Google Scholar
  162. Ron E., Kleinerman R.A., Boice J.D. et al., 1987. A population-based case–control study of thyroid cancer. J Natl Cancer Inst 79:1–12.Google Scholar
  163. Ron E., Lubin J.H., Shore R.E., Mabuchi K., Modan B., Pottern L.M., Schneider A.B., Tucker M.A., Boice J.D., 1995. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141:259–277.Google Scholar
  164. Ron E., Modan B., Preston D., Alfandary E., Stovall M., Boice J., 1989. Thyroid neoplasia following low-dose radiation in childhood. Radiat. Res. 120:516–531.Google Scholar
  165. Rossouw J.E., Anderson G.L., Prentice R.L. et al., 2002. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288(3):321–333.Google Scholar
  166. Rothkamm K., Lobrich M., 2003. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. PNAS 100(9):5057–5062.Google Scholar
  167. Rushton L., Jones D.R., 1992. Oral contraceptive use and breast cancer risk: a meta-analysis of variations with age at diagnosis, parity and total duration of oral contraceptive use. Br J Obstet Gynaecol 99(3):239–46.Google Scholar
  168. SEER (Surveillance, Epidemiology and End Results) Program of the USA 1973–1999 (1999). National Cancer Institute, Bethesda. seer.cancer.gov/csr/1973_1999/thyroid.pdf
  169. SEER (Surveillance, Epidemiology and End Results) Program of the USA 2001–2005 (2005). National Cancer Institute, Bethesda. seer.cancer.gov/statfacts/html/thyro.html
  170. Shore R.E., 1989. Radiation epidemiology: old and new challenges. Environ Health Perspect 81:153–156.Google Scholar
  171. Shore R.E., 1992. Issues and epidemiological evidence regarding radiation-induced thyroid cancer. Radat Res 131:98–111.Google Scholar
  172. Smith-Warner S.A., Ritz J., Hunter D.J., Albanes D., Beeson W.L., van den Brandt P.A., Colditz G et al., 2002. Dietary fat and risk of lung cancer in pooled analysis of prospective studies. Cancer Epidemiol Biomarkers Prev 11(10Pt1):987–992.Google Scholar
  173. Sonnenberg A., Muller A.D., 1993. Constipation and cathartics as risk factors of colorectal cancer: a meta-analysis. Pharmacology 47, Suppl 1:224–233.Google Scholar
  174. Sterne J.A.C., Gavaghan D., Egger M., 2000. Publication and related bias in meta-analysis: Power of statistical tests and prevalence in literature. J Clin Epidemiol 53:1119–1129.Google Scholar
  175. Sterne J.A.C., Juni P., Schulz K.F., Altman D.G., Bartlett C., Egger M., 2002. Statistical method for assessing the influence of study characteristics on treatment effects in “meta-epidemiological” research. Stat Med 21:1513–1524.Google Scholar
  176. Takkouche B., Etminan M., Montes-Martinez A., 2005. Personal use of hair dyes and risk of cancer: a meta-analysis. JAMA 293(20):2516–25.Google Scholar
  177. Taylor R., Cumming R., Woodward A., Black M., 2001. Passive smoking and lung cancer: a cumulative meta-analysis. Aust N Z Public Health 25(3):203–211.Google Scholar
  178. Thompson D.E., Mabuchi K., Ron E. et al., 1994. Cancer incidence in atomic bomb survivors. PII: Solid tumors, 1958–1987. Radiat Res 1994; 137 (suppl 2):S17–S67.Google Scholar
  179. Thorvaldsson S.E., Tulinius H., Bjornsson J. et al., 1992. Latent thyroid carcinoma in Iceland at autopsy. Pathol Res Pract 188(6):747–750.Google Scholar
  180. Toda M., Uneyama C., Yamamoto M., Morikawa K., 2005. Recent trends in evaluating risk associated with acrylamide in food. Focus on a new approach (MOE) to risk assessment by JECFA. Kokuritsu Ivakuhin Shokuhin Eisei Kenkyusho Hokoku 123:63–7.Google Scholar
  181. Tokumaru O., Haruki K., Bacal K., Katagiri T., Yamamoto T., Sakurai Y., 2006. Incidence of cancer among female flight attendants: a meta-analysis. J Travel Med 13(3):127–132.Google Scholar
  182. Tokunaga M., Land C.E., Tokuoka S., Nishimori I., Soda M., Akiba S., 1994. Incidence of female breast cancer among atomic bomb survivors. Hiroshima and Nagasaki, 1950–1985. Radiat Res 138:209–223.Google Scholar
  183. Tronko M.D., Bogdanova T.I., Komissarenko I.V. et al., 1999. Thyroid carcinoma in children and adolescents in Ukraine after the Chernobyl nuclear accident. Statistical data and clinico-morphlogical characteristic. Cancer 86:149–156.Google Scholar
  184. Tucker J.D., Auletta A., Cimino M.C., Dearfield K.L., Jacobson-Kram D., Tice R.T., Carrano A.V., 1993. Sister-chromatid exchange: Second report of the Gene-Tox program. Mutat Res 297:101–180.Google Scholar
  185. Turker M.S., 1998. Estimation of mutation frequencies in normal mammalian cells and the development of cancer. Semin Cancer Biol 8:407–419.Google Scholar
  186. UNSCEAR, 2000. United Nations Scientific Committee on the Effects of Atomic Radiation. 2000 Report to the General Assembly. Annex J. Exposures and effects of the Chernobyl accident. Int J Radiat Med 2000; 2:3–109.Google Scholar
  187. Vijg J., Dolle M., 2001. Handbook of the Biology of Ageing. 5th edition (eds. Masoro E.J., Austad S.N.), San Diego, CA: Academic Press, 534 pp.Google Scholar
  188. Villa E., Melegari M., Scaglioni P.P., Trande P., Cesaro P., Manenti F., 1991. Hepatocellular carcinoma: risk factors other than HBV. Ital J Gastroenterol 23(7):457–460.Google Scholar
  189. Villar J. Carroli G., Belizan J.M., 1995. Predictive ability of meta-analyses of randomized controlled trials. Lancet 345:772–776.Google Scholar
  190. Wang B., Zhang Y., Xu D.Z., Wang A.H., Zhang L., Sun C.S., Li L.S., 2004. Meta-analysis of the relationship between tobacco smoking, alcohol drinking and p53 alteration in cases with esophageal carcinoma. Zhonghua Liu Xing Bing Xue Za Zhi 25(9):775–8.Google Scholar
  191. Wang J.-S., Links J.M., Groopman J.D., 2001. Molecular epidemiology and biomarkers. In: Genetic Toxicology and Cancer Risk Assessment. Choy W.H. (Ed.). New-York, Basel: Marcel Dekker, Inc.Google Scholar
  192. Washburn E.P., Orza M.J., Berlin J.A., Nicholson W.J., Todd A.C., Frumkin H., Chalmers T.C., 1994. Residential proximity to electricity transmission and distribution equipment and risk of childhood leukemia, childhood lymphoma, and childhood nervous system tumors: systematic review, evaluation, and meta-analysis. Cancer Causes Control 5(5):487.Google Scholar
  193. Wei Q., Matanoski G.M., Farmer E.R., Hedayti M.A., Grossman L., 1994. DNA repair related to multiple skin cancers and drug use. Cancer Res 54:437–440.Google Scholar
  194. Willet W.C., 2006. Diet and nutrition. In: Schottenfeld, D., Fraumeni, J.F.Jr. (Eds). Cancer Epidemiology and Prevention. 3rd edition, pp. 405–421. Oxford: Oxford, University Press.Google Scholar
  195. Wood J.W., Tamagaki H., Neriish S., Sato T., Sheldon W.F., Archer P.G, 1969. Thyroid carcinoma in atomic bomb survivors, Hiroshima and Nagasaki. Am J Epidemiol 89:4–14.Google Scholar
  196. Woods K.L., 1995. Mega-trials and management of acute myocardial infarction. Lancet 346:611–614.Google Scholar
  197. World Nuclear Association, 2004. Radiation and the nuclear fuel cycle. At: www.solarstorms.org/WorldNuclear.html
  198. Zeise L., 2001. Risk assessment of genotoxic carcinogens. In: Genetic Toxicology and Cancer Risk Assessment. Choy W.H. (Ed.). New York, Basel: Marcel Dekker, Inc.Google Scholar
  199. Ziegler R.G., Hoover R.N., Pike M.C. et al., 1993. Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst 85:1819–1827.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • K.G. Manton
    • 1
  • Igor Akushevich
    • 1
  • Julia Kravchenko
    • 1
  1. 1.Duke UniversityDurhamUSA

Personalised recommendations