Advertisement

Cancer Modeling: How Far Can We Go?

  • K.G. Manton
  • Igor Akushevich
  • Julia Kravchenko
Part of the Statistics for Biology and Health book series (SBH)

Cancer, a disease which occurs in complex multicellular organisms, appears to reflect a “throw-back” in the evolutionary process (Trosko and Ruch, 1998): cancer cells resemble primitive bacterial cells that survive in relatively unstructured cell colonies, characterized by uncontrolled proliferation, which do not functionally differentiate to support colony survival. In contrast, normal cells in higher multicellular organisms have genes coding connexins – proteins that determine the structural and functional relation of specific cells in a tissue by the alignment of cell pores and ion channels for intercellular communication. Cells that are cancerous appear not to respond to “contact inhibition,” fail to terminally differentiate, appear to be clonally derived from a stem-like cell (i.e., one reverting to a less functionally differentiated state) and continue to change geno- and phenotypically with tumor progression and growth. The biological processes of signal transduction and...

Keywords

Hazard Rate Herpes Simplex Virus Thymidine Kinase Somatic Mutation Theory TSCE Model Stem Cell Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aalen O.O., 1988. Heterogeneity in survival analysis. Stat Med 7:1121–1137.CrossRefGoogle Scholar
  2. Aalen O.O., 1992. Modeling heterogeneity in survival analysis by the compound Poisson distribution. Ann Appl Probab 2:951–972.MATHMathSciNetCrossRefGoogle Scholar
  3. Agur Z., Arakelyan L. et al., 2004. HOPF point analysis for angiogenesis models. Discrete Cont Dyn Syst B 4(1):29–38.MATHMathSciNetCrossRefGoogle Scholar
  4. Akushevich I., Veremeeva G., Kulminski A., Ukraitseva S., Arbeev K., Akleev A.V., Yashin A.I., 2007. New perspectives in modeling of carcinogenesis induced by ionizing radiation. “The 13th International Congress of Radiation Research, San Francisco, California, July 08–12, 2007. Abstract PS4175. In abstract book, p. 246.Google Scholar
  5. Alber M., Chen N. et al., 2006. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description. Phys Rev E 73:051901-1–051901-11.MathSciNetCrossRefGoogle Scholar
  6. Andersen M.H., Becker J.C., Straten P., 2005. Regulators of apoptosis: suitable targets for immune therapy of cancer. Nat Rev Drug Discov 4:399–409.CrossRefGoogle Scholar
  7. Arbeev K.G., Ukraintseva S.V., Arbeeva L.S. et al., 2005. Mathematical models for human cancer incidence rates. Demogr Res 12:237–272.CrossRefGoogle Scholar
  8. Armitage P., Doll R., 1954. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8(1):1–12.CrossRefGoogle Scholar
  9. Armitage P., Doll R., 1961. Stochastic models for carcinogenesis. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press.Google Scholar
  10. Artandi S.E., 2003. Complex roles for telomeres and telomerase in breast carcinogenesis. Breast Cancer Res 5:37–41.CrossRefGoogle Scholar
  11. Bateman H., 1910. Solutions of a system of differential equations occurring in the theory of radioactive transformation. Proc Camb Philol Soc 15:423–427.Google Scholar
  12. Barrett J.C., 1979. The progressive nature of neoplastic transformation of Syrian hamster embryo cells in culture. Prog Exp Tumor Res 24:17–27.Google Scholar
  13. Barrett J.C., Fletcher W.F., 1987. Cellular and molecular mechanisms of multistep carcinogenesis in cell culture models. In: Barrett J.C. (ed.). Mechanisms of Environmental Carcinogenesis, Vol. 2. Boca Raton, FL: CRC Press, pp. 73–116.Google Scholar
  14. Beckman R.A., Loeb L.A., 2005. Genetic instability in cancer: theory and experiment. Semin Cancer Biol 15:423–435.CrossRefGoogle Scholar
  15. Bergers G., Javaherian K. et al., 1999. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284(5415):808–812.CrossRefGoogle Scholar
  16. Bijwaard H., Brugmans M.J., Rispens S.M., 2005. Comment on “Studies of radon-exposed miner cohorts using a biologically based model: comparison of current Czech and French data with historic data from China and Colorado” by Heidenreich W.F., Tomasek L., Rogel A., Laurier D., Tirmarche M., 2004, Radiat Environ Biophys 43:247–256. Radiat Environ Biophys 149–151; author reply 153–154.Google Scholar
  17. Bisacchi D., Benelli R., Vanzetto C. et al., 2003. Antiangiogenesis and angioprevention: mechanisms, problems and perspectives. Cancer Detect Prev 27:229–238.CrossRefGoogle Scholar
  18. Bogenhagen D.F., 1999. Repair of mtDNA in vertebrates. Am J Hum Genet 64:1276–1281.CrossRefGoogle Scholar
  19. Bogenrieder T., Herlyn M., 2003. Axis of evil: molecular mechanisms of cancer metastasis. Oncigene 22:6524–6536.CrossRefGoogle Scholar
  20. Boland C.R., 2002. Heredity nonpolyposis colorectal cancer (HNPCC). In: Vogelstein B., Kinzler K.W. (eds.). The Genetic Basis of Human Cancer. 2nd edition. New York: McGraw-Hill, pp. 307–321.Google Scholar
  21. Boveri T., 1929. The Origin of Malignant Tumors. Baltimore, MD: Williams & Wilkins.Google Scholar
  22. Breckenridge D.G., Germain M., Mathai J.P. et al., 2003. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618.CrossRefGoogle Scholar
  23. Brissette J.L., Kumar N.M., Gilula N.B., Dotto G.P., 1991. The tumor promoter 12-o-tetradecanoylphorbol-13-acetate and the ras oncogene modulate expression and phosphorylation of gap junction proteins. Mol Vellul Biol 11:5364–5371.Google Scholar
  24. Brouland J-P., Gelebart P., Kovasc T. et al., 2005. The loss of sarco/endoplasmium reticulum calcium transport APTase 3 expression is an early event during the multistep process of colon carcinogenesis. Am J Pathol 167:233–242.Google Scholar
  25. Brugmans M.J., Rispens S.M., Bijwaard H., Laurier D., Rogel A., Tomasek L., Tirmarche M., 2004. Radon-induced lung cancer in French and Czech miner cohorts described with a two-mutation cancer model. Radiat Environ Biophys, 43(3):153–163.CrossRefGoogle Scholar
  26. Burch P.R., 1976a. Letter: application of the Weibull distribution. Br J Radiol 49(582):564.Google Scholar
  27. Burch P.R., 1976b. Lung cancer and smoking: is there proof. Br Med J 2(6036):640.Google Scholar
  28. Chambers A.F., Matrisian L.M., 1997. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270.CrossRefGoogle Scholar
  29. Chu K.C., 1985. Multievent model of carcinogenesis: a mathematical model for cancer causation and prevention. In Carcinogenesis: A Comprehensive Survey. Vol. 8, New York: Raven Press, pp. 411–421.Google Scholar
  30. Cifone M.A., Fidler I.J., 1980. Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc Natl Acad Sci USA 77:1039–1043.CrossRefGoogle Scholar
  31. Cook P.J., Doll R., Fellingham S.A., 1969. A mathematical model for the age distribution of cancer in man. Int J Cancer 4:93–112.CrossRefGoogle Scholar
  32. Cristofalo V., Allen R. et al., 1998. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci USA 95:10614–10619.CrossRefGoogle Scholar
  33. Cutler R., Semsei I., 1989. Development, cancer and aging: possible common mechanisms of action and regulation. J Gerontol 44(6):25–34.Google Scholar
  34. Delfino A.B.M., Barreto E.C., da Silva E.T. et al., 1997. The involvement of genes and proteins in apoptosis – Carcinogenesis regulation. Rev Bras Cancerol 43(3). At: http://www.inca.gov.br/rbc/n_43/v03/english/article.html
  35. Denmeade S.R., Jakobsen C.M., Janssen S. et al., 2003. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J Natl Cancer Inst 95:990–1000.CrossRefGoogle Scholar
  36. Denning C., Pitts J.D., 1997. Bystander effects of different enzyme-prodrug systems for cancer gene therapy depend on different pathways for intercellular transfer of toxic metabolites, a factor that will govern clinical choice of appropriate regimens. Hum Gene Ther 8:1825–1835.CrossRefGoogle Scholar
  37. DiMauro S., Schon E.A., 2003. Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668.CrossRefGoogle Scholar
  38. Dix D., 1989. The role of aging in cancer incidence: an epidemiological study. J Gerontol 44(6):10–18.Google Scholar
  39. Doege K., Heine S., Jensen I. et al., 2005. Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact. Blood 106:2311–2317.CrossRefGoogle Scholar
  40. Duensing S., Munger K., 2002. Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability. Oncogene 21:6241–6248.CrossRefGoogle Scholar
  41. Duffy M.J., Maguire T.M., Hill A. et al., 2000. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2:252–257.CrossRefGoogle Scholar
  42. Economos A., 1982. Rate of aging, rate of dying, and the mechanisms of mortality. Arch Gerontol Geriatr 1(1):3–27.MathSciNetCrossRefGoogle Scholar
  43. El-Omar E.M., Rabkin C.S., Gammon M.D. et al., 2003. Increased risk of non-cardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124(5):1193–1201.CrossRefGoogle Scholar
  44. Eng C., Kiuru M., Fernandez M.J., Aaltonen L.A., 2003. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer 3:193–202.CrossRefGoogle Scholar
  45. Ershler W.B., Keller E.T., 2000. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51:245–70.CrossRefGoogle Scholar
  46. Fearon E.R., Jones P.A., 1992. Progressing toward a molecular description of colorectal cancer development. FASEB J 6:2783–2790.Google Scholar
  47. Fearon E.R., Vogelstein B., 1990. A genetic model for colorectal tumorogenesis. Cell 61(5):759–767.CrossRefGoogle Scholar
  48. Fesik S.W., 2005. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885.CrossRefGoogle Scholar
  49. Fisher J.C., Hollomon J.H., 1951. A hypothesis for the origin of cancer foci. Cancer 4:916–918.CrossRefGoogle Scholar
  50. Fliss M.S., Usadel H., Caballero O.L. et al., 2000. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017–2019.CrossRefGoogle Scholar
  51. Folkman J., 1971. Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186.CrossRefGoogle Scholar
  52. Folkman J., 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–30.CrossRefGoogle Scholar
  53. Frank S.A., 2004. Commentary: Mathematical models of cancer progression and epidemiology in the age of high throughput genomics. Int J Epidemiol 33:1179–1181.CrossRefGoogle Scholar
  54. Frank S.A., 2007. Dynamics of cancer. incidence, inheritance and evolution. In: Orr H.A. (ed.). Princeton Series in Evolutionary Biology. Princeton and Oxford: Princeton University Press, p. 378.Google Scholar
  55. Garte S., 2006. Theory in carcinogenesis and epidemiology. J Epidemiol Community Health 57:85.CrossRefGoogle Scholar
  56. Gerl R., Vaux D.L., 2005. Apoptosis in the development and treatment of cancer. Carcinogenesis 26:263–270.CrossRefGoogle Scholar
  57. Girald-Rosa W., Vleugels R.A., Musiek A.C. et al., 2005. High-throughput mitochondrial genome screening method for nonmelanoma skin cancer using multiplexed temperature gradient capillary electrophoresis. Clin Chem 51:305–311.CrossRefGoogle Scholar
  58. Gjessing H.K, Aalen O.O., Hjort N.L., 2003. Frailty models based on Lévy processes. Adv Appl Probab 35:532–550.MATHMathSciNetCrossRefGoogle Scholar
  59. Gregori G., Hanin L., Luebeck G., Moolgavkar S., Yakovlev A., 2002. Testing goodness of fit for stochastic models of carcinogenesis. Math Biosci 175:13–29.MATHMathSciNetCrossRefGoogle Scholar
  60. Hanahan D., Weinberg R.A., 2000. The hallmarks of cancer. Cell 100:57–70.Google Scholar
  61. Harding H.P., Calfon M., Urano F. et al., 2002. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18(575–599).CrossRefGoogle Scholar
  62. Harris C.C., 1987. Human tissues and cells in carcinogenesis research. Cancer Res 47:1–10.Google Scholar
  63. Hart R.W., Setlow R.B., 1976. DNA repair in late-passage human cells. Mech Ageing Dev 5(1):67–77.CrossRefGoogle Scholar
  64. Hasty P., 2005. The impact of DNA damage, genetic mutation and cellular responses on cancer prevention, longevity and aging: observations in humans and mice. Mech Aging Dev 126(1):71–77.CrossRefGoogle Scholar
  65. Hazelton W., Clements M. et al., 2005. Multistage carcinogenesis and lung cancer mortality in three cohorts. Cancer Epidemiol Biomarkers Prev 14(5):1171–1181.CrossRefGoogle Scholar
  66. He Q., Huang Y., Sheikh M.S., 2004. Proteasome inhibitor MG132 upregulates death receptor 5 and cooperates with Apo2L/TRAIL to induce apoptosis in Bax-proficient and -deficient cells. Oncogene 23:2554–2558.CrossRefGoogle Scholar
  67. He Q., Lee D.I., Rong R. et al., 2002a. Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway. Oncogene 21:2623–2633.Google Scholar
  68. He Q., Luo X., Huang Y. et al., 2002b. Apo2L/TRAIL differentially modulates the apoptotic effects of sulindac and a COX-2 selective non-steroidal anti-inflammatory agent inBax-deficient cells. Oncogene 21:6032–6040.Google Scholar
  69. He T.C., Sparks A.B., Rago C. et al., 1998. Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512.CrossRefGoogle Scholar
  70. Heffelfinger S.C., Gear R.B., Schneider J. et al., 2003. TNP-470 inhibits 7,12-dimethylbenz[α]anthracene-induced mammary tumor formation when administered before the formation of carcinoma in situ but is not additive with tamozifen. Lab Invest 83:1001–1011.CrossRefGoogle Scholar
  71. Heidenreich W.F., 2005a. Response to the comment on “Studies of radon-exposed miner cohorts using a biologically based model: comparison of current Czech and French data with historic data from China and Colorado” by Heidenreich W.F., Tomasek L., Rogel A., Laurier D., Tirmarche M., 2004. Radiat Environ Biophys 43:247–256. Radiat Environ Biophys, 44(2):153–154.Google Scholar
  72. Heidenreich W., 2005b. Heterogeneity of cancer risk due to stochastic effects. Risk Anal 25:1589–1594.Google Scholar
  73. Heidenreich W.F., 2006. Heterogeneity of cancer risk due to stochastic effects. Risk Anal 25(6):1589–1594.MathSciNetCrossRefGoogle Scholar
  74. Heidenreich W.F., Atkinson M., Paretzke H.G., 2001 Radiation-induced cell inactivation can increase the cancer risk. Radiat Res 155:870–872.CrossRefGoogle Scholar
  75. Heidenreich W., Paretzke H., 2001. The two-stage clonal expansion model as an example of a biologically based model of radiation-induced cancer. Radiat Res 156:678–81.CrossRefGoogle Scholar
  76. Heidenreich W.F., Tomasek L., Rogel A., Laurier D., Tirmarche M., 2004. Studies of radon-exposed miner cohorts using a biologically based model: comparison of current Czech and French data with historic data from China and Colorado. Radiat Environ Biophys 43(4):247–256.CrossRefGoogle Scholar
  77. Heselmeyer K., Hellstrom A.C., Blegen H., Schrock E., Silversward C., Shah K., Auer G., Ried T., 1998. Primary carcinoma of the fallopian tube: comparative genomic hybridization reveals high genetic instability and a specific, recurring pattern of chromosomal aberrations. Int J Gynecol Pathol 17:245–254.CrossRefGoogle Scholar
  78. Heslin M.J., Jieming Y., Jonson M.R. et al., 2001. Role of matrix metalloproteinases in colorectal carcinogenesis. Ann Surg 233:786–792.CrossRefGoogle Scholar
  79. Hibi K., Nakayama H., Yamazaki T et al., 2001a. Detection of mitochondrial DNA alterations in primary tumors and corresponding serum of colorectal cancer patients. Int J Cancer 94:429–431.Google Scholar
  80. Hibi K., Nakayama H., Yamazaki T. et al., 2001b. Mitochondrial DNA alteration in esophageal cancer. Int J Cancer 92:319–321.Google Scholar
  81. Hiyama K., Hiyama E., Ishioka S. et al., 1995a. Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst 87:895–902.Google Scholar
  82. Hiyama E., Yokoyama T., Tatsumoto N. et al., 1995b. Telomerase activity in gastric cancer. Cancer Res 55:3258–3262.Google Scholar
  83. Hopkin K., 1996. Tumor evolution: survival of the fittest cells. J NIH Res 8:37–41.Google Scholar
  84. Hougaard P., 1984. Life table methods for heterogeneous populations: distributions describing the heterogeneity. Biometrika 71:75–83.MATHMathSciNetCrossRefGoogle Scholar
  85. Huang H., Patel D.D., Manton K.G., 2005. The immune system aging: roles of cytokines, T cells and NKcells. Front Biosci 10:192–215.CrossRefGoogle Scholar
  86. Hunter T., 1986. Cell growth control mechanisms. Nature 322:14–15.CrossRefGoogle Scholar
  87. Issa J.P., 2004. Opinion: CpG island methylator phenotype in cancer. Nat Rev Cancer 4:988–993.CrossRefGoogle Scholar
  88. Jagat N., Kolodgie F., Virmani R., 2000. Apoptosis and cardiomyopathy. Molecular genetics. Curr Opin Cardiol 15(3):183–188.CrossRefGoogle Scholar
  89. Jakupciak J.P., Wang W., Markowitz M.E. et al., 2005. Mitochondrial DNA as a cancer biomarker. J Mol Diagn 7(2):258–267.Google Scholar
  90. Jass J.R., Barker M., Fraser L. et al., 2003. APC mutation and tumor budding in colorectal cancer. J Clin Pathol 56:69–73.CrossRefGoogle Scholar
  91. Jass J.R., Whitehall V.L., Young J. et al., 2002a. Emerging concepts in colorectal neoplasia. Gastroenterology 123:862–876.Google Scholar
  92. Jass J.R., Young J., Leggett B.A., 2002b. Evolution of colorectal cancer: change of pace and change of direction. J Gastroenterol Hepatol 17:17–26.Google Scholar
  93. Jeronimo C., Nomoto S., Caballero O.L. et al., 2001. Mitochondrial mitations in early stage prostate cancer and bodily fluids. Oncogene 20:5195–5198.CrossRefGoogle Scholar
  94. Jewell N., 1982. Mixtures of exponential distributions. Ann Stat 10:479–484.MATHMathSciNetCrossRefGoogle Scholar
  95. Jillella A.P., Day D.S., Severson K. et al., 2000. Non-Hodgkin's lymphoma presenting as anasarca: probably mediated by tumor necrosis factor alpha (TNF-alpha). Leuk Lymphoma 38(3–4):419–422.Google Scholar
  96. Jones J.B., Song J.J., Hempen P.M. et al., 2001. Detection of mitochondrial DNA mutations in pancreatic cancer offers a ‘mass’-ive advantage over detection of nuclear DNA mutations. Cancer Res 61:1299–1304.Google Scholar
  97. Kagan J., Srivastava S., 2005. Mitochondria as a target for early detection and diagnosis of cancer. Crit Rev Clin Lab Sci 42(5–6):453–472.CrossRefGoogle Scholar
  98. Kalashnikov V.V., 1994. Mathematical Methods in Queuing Theory. Dordrecht, The Netherlands: Kluwer.Google Scholar
  99. Kamat A.A., Fletcher M., Gruman L.M. et al., 2006. The clinical relevance of stromal matrix metalloproteinase expression in ovarian cancer. Clin Cancer Res 12:1707–1714.CrossRefGoogle Scholar
  100. Kerr J.F., Wyllie A.H., Currie A.R., 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257.CrossRefGoogle Scholar
  101. Khuder S., Herial N. et al., 2005. Non-sterodial anti-inflammatory drug use and lung cancer: a meta-analysis. Chest 127:748–754.CrossRefGoogle Scholar
  102. Kim S., Kaminker P., Campisi J., 1999. TIN2, a new regulator of telomere length in human cells. Nat Genet 23:405–412.CrossRefGoogle Scholar
  103. Kim H.C., Lee H.J., Roh S.A. et al., 2008. CpG island methylation in familial colorectal cancer patients not fulfilling the Amsterdam criteria. J Korean Med Sci 23:270–277.CrossRefGoogle Scholar
  104. Kinzler K.W., Vogelstein B., 1997. Gatekeepers and caretakers. Nature 386:761–763.CrossRefGoogle Scholar
  105. Kinzler K.W., Vogelstein B., 1998. Landscaping the cancer terrain. Science 280(5366):1036–1037.CrossRefGoogle Scholar
  106. Kinzler K.W., Vogelstein B., 2002. Colorectal tumors. In: Vogelstein B., Kinzler K.W. (eds.). The Genetic Basis of Human Cancer. 2nd edition. New-York: McGraw-Hill, pp. 583–612.Google Scholar
  107. Klebanov L.V., Yakovlev A.Yu., Rachev S.T., 1993. A stochastic model of radiation carcinogenesis: latent time distributions and their properties. Math Biosci 113(1):51–75.MATHCrossRefGoogle Scholar
  108. Klein G., Klein E., 1984. Oncogene activiation and tumor progression. Carcinogenesis 5:429–435.CrossRefGoogle Scholar
  109. Klein S., McCormick F., Levitzki A., 2005. Killing time for cancer cells. Nat Rev Cancer 5:573–580.CrossRefGoogle Scholar
  110. Knudson A.G., 1971. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci 68:820–823.CrossRefGoogle Scholar
  111. Kodama S., Ariyoshi K., Watanabe S. et al., 2006. Telomere biology: implications for radiation carcinogenesis. Radiation Risk Perspectives: Proceedings of the Second Nagasaki Symposium of International Consortium for Medical Care of Hibakusha and Radiation Life Science, Nagasaki, Japan, 2006. Int Congr Ser 1299:242–247.CrossRefGoogle Scholar
  112. Kondo S., 1983. Carcinogenesis in relation to the stem cell mutation hypothesis. Differentiation 24:1–8.MathSciNetCrossRefGoogle Scholar
  113. Krestinina L.Y., Preston D.L., Ostroumova E.V., Degteva M.O., Ron E., Vyushkova O.V. et al., 2005. Protracted radiation exposure and cancer mortality in the Techa River Cohort. Radiat Res 164(5):602–611.CrossRefGoogle Scholar
  114. Krtolica A., Campisi J., 2002. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 34(11):1401.CrossRefGoogle Scholar
  115. Kumimoto H., Yamane Y., Nishimoto Y. et al., 2004. Frequent somatic mutations of mitochondrial DNA in esophageal squamous cell carcinoma. Int J Cancer 108:228–231.CrossRefGoogle Scholar
  116. Kuramoto K., Matsushita S., Esaki Y. et al., 1993. Prevalence, rate of correct clinical diagnosis and mortality of cancer in 4,894 elderly autopsy cases. Nippon Ronen Igakkai Zasshi 30(1):35–40.Google Scholar
  117. Land C., 1995. Studies of cancer and radiation dose among atomic bomb survivors. The example of breast cancer. J Am Med Assoc 274(5):402–407.CrossRefGoogle Scholar
  118. Land H., Parada L.F., Weinberg R.A., 1983. Tumorogenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602.CrossRefGoogle Scholar
  119. Laurier D., Rogel A., Tomasek L., Tirmarche M., 2005. Comment on “Studies of radon-exposed miner cohorts using a biologically based model: comparison of current Czech and French data with historic data from China and Colorado” by Heidenreich W.F., Tomasek L., Rogel A., Laurier D., Tirmarche M., 2004. Radiat Environ Biophys 43:247–256, and “Radon-induced lung cancer in French and Czech miner cohorts described with a two-mutation cancer model” by Brugmans M.J.P., Rispens S.M., Bijwaard H., Laurier D., Rogel A., Tomasek L., Tirmarche M., 2004. Radiat Environ Biophys 43:153–163. Radiat Environ Biophys, 44(2):155–156.Google Scholar
  120. Lengauer C., Kinzler K.W., Vogelstein B., 1998. Genetic instabilities in human cancers. Nature 396:643–649.CrossRefGoogle Scholar
  121. Liang J., Bennett J., Krause N. et al., 2002. Old age mortality in Japan. J Gerontol Ser B: Psychol Sci Social Sci 57:S294–S307.Google Scholar
  122. Lievre A., Chapusot C., Bouvier A.M. et al., 2005. Clinical value of mitochondrial mutations in colorectal cancer. J Clin Oncol 23:3517–3525.CrossRefGoogle Scholar
  123. Lightowlers R.N., Chinnery P.F., Turnbull D.M., Howell N., 1997. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. TIG 13:450–455.CrossRefGoogle Scholar
  124. Ling V., Chambers A.F., Harris J.F., Hill R.P., 1985. Quantitative genetic analysis of tumor progression. Cancer Metast Rev 4:173–194.CrossRefGoogle Scholar
  125. Little M.P., 1995. Are two mutations sufficient to cause cancer? Some generalizations of the two-mutation model of carcinogenesis of Moolgavkar, Venzon, and Knudson, and of the multistage model of Armitage and Doll. Biometrics 51:1278–1291.MATHCrossRefGoogle Scholar
  126. Little M., 1996. Generalizations of the two-mutation and classical multi-stage models of carcinogenesis fitted to the Japanese atomic bomb survivor data. J Radiol Prot 16(7):7–24.CrossRefGoogle Scholar
  127. Little M., 2004. Risks associated with ionizing radiation. Br Med Bull 2003;68:259–275.CrossRefGoogle Scholar
  128. Little M.P., Haylock R.G., Muirhead C.R., 2002. Modelling lung tumour risk in radon-exposed uranium miners using generalizations of the two-mutation model of Moolgavkar, Venzon and Knudson. Int J Radiat Biol, 78(1):49–68.CrossRefGoogle Scholar
  129. Little M.P., Heidenreich W.F., Moolgavkar S.H., Schöllnberger H., Thomas D.C., 2008. Systems biological and mechanistic modelling of radiation-induced cancer. Radiat Environ Biophys 47(1):39–47.CrossRefGoogle Scholar
  130. Little M.P., Li G., 2007. Stochastic modelling of colon cancer: is there a role for genomic instability? Carcinogenesis 28(2):479–87.CrossRefGoogle Scholar
  131. Little M.P., Wright E.G., 2003. A stochastic carcinogenesis model incorporating genomic instability fitted to colon cancer data. Math Biosci 183(2):111–34.MATHMathSciNetCrossRefGoogle Scholar
  132. Loewenstein W.R., 1966. Permeability of membrane junctions. Ann NY Acad Sci 137:441–472.CrossRefGoogle Scholar
  133. Lotka A.J., 1925. Elements of Physical Biology. Baltimore, MD: Williams & Wilkins Co.MATHGoogle Scholar
  134. Manton K.G., Lowrimore G., Yashin A.I., 1993. Methods for combining ancillary data in stochastic compartment models of cancer mortality: generalization of heterogeneity models. Math Popul Stud 4(2):133–147.CrossRefGoogle Scholar
  135. Manton K.G., Stallard E., 1979. Maximum likelihood estimation of a stochastic compartment model of cancer latency: lung cancer mortality among white females in the U.S. Comput Biomed Res 12:313–325.CrossRefGoogle Scholar
  136. Manton K.G., Stallard E., 1982. A population-based model of respiratory cancer incidence, progression, diagnosis, treatment and mortality. Comput Biomed Res 15:342–360.CrossRefGoogle Scholar
  137. Manton K.G., Stallard E., 1988. Chronic disease risk modeling: measurement and evaluation of the risks of chronic disease processes. In the Griffin Series of the Biomathematics of Diseases. London, England: Charles Griffin Limited.Google Scholar
  138. Manton K.G., Stallard E., Singer B.H., 1992. Projecting the future size and health status of the U.S. elderly population. Int J Forecast 8:433–458.CrossRefGoogle Scholar
  139. Manton K.G., Volovyk S., Kulminski A., 2004. ROS effects on neurodegeneration in Alzheimer’s disease and related disorders: on environmental stresses of ionizing radiation. Curr Alzhei Res (Lahiri D.K., ed.) 1(4): 277–293.CrossRefGoogle Scholar
  140. Manton K.G., Woodbury M.A., Stallard E., Riggan W.B., Creason J.P., Pellom A.C., 1989. Empirical Bayes procedures for stabilizing maps of U.S. cancer mortality rates. J Am Stat Assoc 84(407):637–650.CrossRefGoogle Scholar
  141. Manton K.G., Woodbury M.A., Tolley H.D., 1994. Statistical Applications Using Fuzzy Sets. New York: Wiley-Interscience Publication, John Wiley & Sons, p. 312.MATHGoogle Scholar
  142. Manton K.G., Yashin A.I., 2000. Mechanisms of aging and mortality: searches for new paradigms. Monographs on Population Aging, 7. Odense, Denmark: Odense University Press.Google Scholar
  143. Markert C., 1968. Neoplasia: a disease of cell differentiation. Cancer Res 28:1908–1914.Google Scholar
  144. Maruyama Y., Hanai H., Fujita M. et al., 1997. Telomere length and telomerase activity in carcinogenesis of the stomach. Jpn J Clin Oncol 27(4):216–220.CrossRefGoogle Scholar
  145. Maximo V., Soares P., Seruca R. et al., 2001. Microsatellite instability, mitochondrial DNA large deletions, and mitochondrial DNA mutations in gastric carcinoma. Genes Chromosomes Cancer 32:136–143.CrossRefGoogle Scholar
  146. Medina D., 1988. The preneoplastic state in mouse mammary tumorogenesis. Carcinogenesis 9:1113–1119.CrossRefGoogle Scholar
  147. Medrano M.J., Lopez-Abente G., Barrado M.J. et al., 1997. Effect of age, birth cohort, and period of death on cerebrovascular mortality in Spain, 1952 through 1991. Stroke 28:40–44.Google Scholar
  148. Meeker A.K., Hicks J.L., Iacobuzio-Donahue C.A. et al., 2004. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res 10:3317–3326.CrossRefGoogle Scholar
  149. Meierhofer D., Mayr J.A., Fink K. et al., 2006. Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism. Br J Cancer 94:268–274.CrossRefGoogle Scholar
  150. Michor F., Nowak M. et al., 2006. Stochastic dynamics of metastasis formation. J Theor Biol 240:521–530.MathSciNetCrossRefGoogle Scholar
  151. Mihara M., Erster S., Zaika A., Petrenko O., Chittenden T., Pancoska P., Moll U.M., 2003. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590.CrossRefGoogle Scholar
  152. Minna J.D., Gazdar A.E., 1996. Translational research comes of age. Nat Med 2(9):974–975.CrossRefGoogle Scholar
  153. Miura N., Horikawa I., Nishimoto A. et al., 1997. Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. Cancer Genet Cytogenet 93(1):56–62.CrossRefGoogle Scholar
  154. Moolgavkar S.H., Knudson A.G., 1981. Mutation and cancer: a model for human carcinogenesis. J Natl Cancer Inst 66(6):1037–52.Google Scholar
  155. Moolgavkar S., Krewski D., Schwarz M., 1999. Mechanisms of carcinogenesis and biologically based models for estimation and prediction of risk. In: Moolgavkar S., Krewski D., Zeise L., Cardis E., Møller H. (eds.). Quantitative Estimation and Prediction of Human Cancer Risks. Scientific publications No. 131, Lyon: International Agency for Research on Cancer, pp. 179–237.Google Scholar
  156. Moolgavkar S.H., Luebeck E.G., 1992. Multistage carcinogenesis: population-based model for colon cancer. J Natl Cancer Inst 84:610–618.CrossRefGoogle Scholar
  157. Moolgavkar S.H., Venzon D.J., 1979. Two event model for carcinogenesis: incidence curves for childhood and adult cancer. Math Biosci 47:55–77.MATHCrossRefGoogle Scholar
  158. Nagy A., Wilhelm M., Sukosd F. et al., 2002. Somatic mitochondrial DNA mutations in human chromophobe renal cell carcinomas. Genes Chromosomes Cancer 35:256–260.CrossRefGoogle Scholar
  159. Neckelmann N., Li K., Wade R.P. et al., 1987. cDNA sequence of a human skeletal muscle ADP/ATP translocator: lack of a leader peptide, divergence from a fibroblast translocator cDNA, and coevolution with mitochondrial DNA genes. Proc Natl Acad Sci USA 84:7580–7584.CrossRefGoogle Scholar
  160. Nelson W.G., Carter H.B., DeWeese T.L. et al., 2004. Prostate cancer. In: Abeloff M.D., Armitage J.O., Niederhuber J.E., Kastan M.B., McKenna W.G. (eds.). Clinical Oncology. 3rd edition. London: Elsevier, Churchill Livingstone, pp. 1877–1942, 3205.Google Scholar
  161. Nettesheim P., Barrett J.C., 1984. Tracheal epithelial cell transformation: a model system for studies on neoplastic progression. Crit Rev Toxicol 12(3):215–239.CrossRefGoogle Scholar
  162. Niederhuber J.E., Cole C.E., Grochow L. et al., 2004. Colon cancer. In: Abeloff M.D., Armitage J.O., Niederhuber J.E., Kastan M.B., McKenna W.G. (eds.). Clinical Oncology. 3rd edition. London: Elsevier, Churchill Livingstone, pp. 1877–1942, 3205.Google Scholar
  163. Nishikawa M., Nishiguchi S., Shiomi S. et al., 2001. Somatic mutations of mitochondrial DNA in cancerous and noncancerous liver tissue in individuals with hepatocellular carcinoma. Cancer Res 61:1843–1845.Google Scholar
  164. Nishitoh H., Matsuzawa A., Tobiume K. et al., 2002. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355.CrossRefGoogle Scholar
  165. Nordling C.O., 1953. A new theory on the cancer-inducing mechanism. Br J Cancer 7:68–72.CrossRefGoogle Scholar
  166. Nowak M.A., Komarova N.L., Sengupta A. et al., 2002. The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA 99:16226–16231.CrossRefGoogle Scholar
  167. Nowell P.C., 1976. The clonal evolution of tumor cell populations. Science 194:23–28.CrossRefGoogle Scholar
  168. Nowell P.C., 1986. Mechanism of tumor progression. Cancer Res 46:2203–2207.Google Scholar
  169. Olkin I., Gleser L.J., Derman C., 1978. Probability Models and Applications. New York: MacMillan Publishing, pp. 289–298.Google Scholar
  170. Oyadomari S., Mori M., 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389.CrossRefGoogle Scholar
  171. Paillard F., 1997. Bystander effects in enzymes/prodrug gene therapy – Commentary. Hum Gene Ther 8:1733–1735.CrossRefGoogle Scholar
  172. Pardoll D.W., 2004. Immunology and cancer. In: Abeloff M.D., Armitage J.O., Niederhuber J.E., Kastan M.B., McKenna W.G. (eds.). Clinical Oncology. 3rd edition. London: Elsevier, Churchill Livingstone, 2004.Google Scholar
  173. Parr R.L., Dakubo G.D., Thayer R.E. et al., 2006. Mitochondrial DNA as a potential tool for early cancer detection. Hum Genomics 2(4):252–257.Google Scholar
  174. Pejovic T., Ladner D., Intengan M. et al., 2004. Somatic D-loop mitochondrial DNA mutations are frequent in uterine serous carcinoma. Eur J Cancer 40:2519–2524.CrossRefGoogle Scholar
  175. Peto R., Parish S.E., Gray R.G., 1985. There is no such thing as adeing, and cancer is not related to it. IARC Sci Publ 58:43–53.Google Scholar
  176. Peto R., Roe F.J., Lee P.N. et al., 1975. Cancer and ageing in mice and men. Br J Cancer 32(4):411–426.CrossRefGoogle Scholar
  177. Petros J.A., Baumann A.K., Ruiz-Pesini E. et al., 2005. myDNA mutations increase tumorogenicity in prostate cancer. Proc Natl Acad Sci USA 102:719–724.CrossRefGoogle Scholar
  178. Pettepher C.C., LeDoux S.P., Bohr V.A. et al., 1991. Repair of alkalilabile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J Biol Chem 266:3113–3117.Google Scholar
  179. Pfeffer U., Ferrari N., Morini M. et al., 2003. Antiangiogenic activity of chemopreventive drugs. Int J Biol Markers 18:70–74.Google Scholar
  180. Pike M.C., 1966. A method of analysis of a certain class of experiments in carcinogenesis. Biometrics 22:142–161.CrossRefGoogle Scholar
  181. Pitot H.C., Goldsworthy T., Moran S., 1981. The natural history of carcinogenesis: implications of experimental carcinogenesis in the genesis of human cancer. J Supramol Struct Cellul Biochem 17:133–146.CrossRefGoogle Scholar
  182. Polyak K., Li Y., Zhu H. et al., 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20:291–293.CrossRefGoogle Scholar
  183. Pompei F., Plkanov M., Wilson R., 2001. Age distribution of cancer in mice: the incidence turnover at old age. Toxicol Ind Health 17(1):7–16.CrossRefGoogle Scholar
  184. Pompei F., Wilson R., 2001. Age distribution of cancer: the incidence turnover at old age. Hum Ecol Risk Assess 7(6):1619–1650.CrossRefGoogle Scholar
  185. Pompei F., Wilson R., 2002. A quantitative model of cellular senescence influence on cancer and longevity. Toxicol Ind Health 18:365–376.CrossRefGoogle Scholar
  186. Potter V.R., 1973. Biochemistry of cancer. In: Holland J., Frei E. (eds.). Cancer Medicine. Philadelphia: Lea and Febiger Publishers, pp. 178–192.Google Scholar
  187. Potter V.R., 1978. Phenotypic diversity in experimental hepatomas: the concept of partially blocked ontogeny. Br J Cancer 38:1–23.CrossRefGoogle Scholar
  188. Prasad K.N., Cole W.C., Hasse G.M., 2004. Health risks of low-dose ionizing radiation in humans: a review. Exp Biol Med 229:378–382.Google Scholar
  189. Ramaswamy S., Ross K.N., Lander E.S. et al., 2003. A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54.Google Scholar
  190. Rainsford J., Cohen P., Dix D., 1985. On the role of aging in cancer incidence: analysis of the lung cancer data. Anticancer Res 5(4):427–430.Google Scholar
  191. Rajagopalan H., Bardelli A., Lengauer C. et al., 2002. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418:934.CrossRefGoogle Scholar
  192. Rajagopalan H., Nowak M.A., Vogelstein B. et al., 2003. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 3:695–701.CrossRefGoogle Scholar
  193. Rao R.V., Ellerby H.M., Bredesen D.E., 2004. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380.CrossRefGoogle Scholar
  194. Reddel R.R., 2000. The role of senescence and immortalization in carcinogenesis. Carcinogenesis 21:477–484.CrossRefGoogle Scholar
  195. Reed J.C., Pellecchia M., 2005. Apoptosis-based therapies for hematologic malignancies. Blood 106:408–418.CrossRefGoogle Scholar
  196. Rhim J.S., 2001. Molecular and genetic mechanism of prostate cancer. Radiat Res 155:128–132.CrossRefGoogle Scholar
  197. Richard S.M., Bailliet G., Paez G.L. et al., 2000. Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res 60:4231–4237.Google Scholar
  198. Risken H., 1996. The Fokker-Planck Equation: Methods of Solution and Application. 2nd edition. Amsterdam: Elsevier.Google Scholar
  199. Risken H., 1999. The Fokker-Planck Equation. 2nd edition. New York: Springer.Google Scholar
  200. Ritter G., Wilson R., Pompei F. et al., 2003. The multistage model of cancer development: some implications. Toxicol Ind Health 19:125–145.CrossRefGoogle Scholar
  201. Rudolph K.L., Chang S., Lee H.W. et al., 1999. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712.CrossRefGoogle Scholar
  202. Rutkowski D.T., Kaufman R.J., 2004. A trip to the ER: coping with stress. Trends Cell Biol 14:20–28.CrossRefGoogle Scholar
  203. Schmitt H., Blin N., Zankl H. et al., 1994. Telomere length variation in normal and malignant human tissues. Gene Chromosomes Cancer 11:171–177.CrossRefGoogle Scholar
  204. Schwartz H.S., Juliao S.F., Sciadini M.F. et al., 1995. Telomerase activity and oncogenesis in giant cell tumor of bone. Cancer 75:1094–1099.CrossRefGoogle Scholar
  205. Sell S., 1993. Cellular origin of cancer: de-differentiation or stem cell maturation arrest. Environ Health Perspect 101:15–26.CrossRefGoogle Scholar
  206. Sell S. (ed.), 2003. Stem Cells. Handbook. Totowa, NJ: Humana Press. p. 509.Google Scholar
  207. Shen Z., Xu L. et al., 2001. A comparative study of telomerase activity and malignant phenotype in multistage carcinogenesis of esophageal epithelial cells induced by human papillomavirus. Int J Mol Med 8:633–639.Google Scholar
  208. Shen Z., Xu L. et al., 2004. The multistage process of carcinogenesis in human esophageal epithelial cells induced by human papillomavirus. Oncol Rep 11:647–654.Google Scholar
  209. Shiino M., 2003. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Phys Rev E 67:056118-1–056118-16.CrossRefGoogle Scholar
  210. Sommerfield H.J., Meeker A.K., Piatyszek M.A. et al., 1996. Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res 56:218–222.Google Scholar
  211. Sonnenschein C., Soto A.M., 2000. Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog 29:205–211.CrossRefGoogle Scholar
  212. Soto A.M., Sonnenschein C., 2004. The somatic mutation theory of cancer: growing problems with the paradigm? Bioessays 26:1097–1107.CrossRefGoogle Scholar
  213. Spencer S.L., Gerety R.A., Pienta K.J. et al., 2006. Modeling somatic evolution in tumorogenesis. PLoS Computational Biology 2:e108.Google Scholar
  214. Stanta G., Campagner L., Cavallieri F. et al., 1997. Cancer of the oldest old. What we have learned from autopsy studies. Clin Geriatr Med 13(1):55–68.Google Scholar
  215. Stoler D.L., Chen N., Basik M. et al., 1999. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc Natl Acad Sci 96:15121–15126.CrossRefGoogle Scholar
  216. Storm S.M., Rapp U.R., 1993. Oncogene activation: c-raf-1 gene mutations in experimental and naturally occurring tumors. Toxicol Lett 67:210–210.CrossRefGoogle Scholar
  217. Strachan T., Read A.P., 1999. Human Molecular Genetics. 2nd edition. New York: John Willey & Sons, Publishers, p. 576.Google Scholar
  218. Sui G., Zhou S., Wang J. et al., 2006. Mitochondrial DNA mutations in preneoplastic lesions of the gastrointestinal tract: a biomarker for the early detection of cancer. Mol Cancer 5:73, doi:10.1186/1476-4598-5-73. At: www.molecular-cancer.com/content/5/73.
  219. Tagore K.S., Lawson M.J., Yucaitis J.A. et al., 2003. Sensitivity and specificity of a stool DNA multitarget assay panel for the detection of advanced colorectal neoplasia. Clin Colorectal Cancer 3:47–53.CrossRefGoogle Scholar
  220. Tan W.-Y., 1991. Stochastic Models of Carcinogenesis. New York: Markel Dekker.Google Scholar
  221. Tan D.J., Bai R.K., Wong L.J., 2002. Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res 62:972–989.Google Scholar
  222. Tan W.-Y., Chen C.W., 1991. A multiple pathway model of carcinogenesis involving one stage models and two-stage models. In: Arino O., Axelrod D.E., Kimmel M. (eds.). Mathematical Population Dynamics, Chapter 31. New York: Marcel Dekker, Inc., pp. 469–482.Google Scholar
  223. Tan W., Chen C., 1998. Stochastic modeling of carcinogenesis: some new insights. Math Comput Model 28(11):49–71.MATHMathSciNetCrossRefGoogle Scholar
  224. Tan W., Zhang L., Chen C., 2004. Stochastic modeling of carcinogenesis: state space models and estimation of parameters. Discrete Cont Dyn Syst Ser B 4(1):297–322.MATHMathSciNetGoogle Scholar
  225. Thompson H.J., McGinley J.N., Wolfe P. et al., 2004. Targeting angiogenesis for mammary cancer prevention: factors to consider in experimental design and analysis. Cancer Epidemiol, Biomarkers Prev 13(7):1173–1184.Google Scholar
  226. Till J.E., 1982. Stem cells in differentiation and neoplasia. J Cell Physiol 1:3–11.CrossRefGoogle Scholar
  227. Trosko J.E., Chang C.C., 1979. Genes, pollutants and human diseases. Quart Rev Biophys 11:603–627.CrossRefGoogle Scholar
  228. Trosko J.E., Chang C.C., Madhukar B.V., Dupont E., 1993. Oncogenes, tumor suppressor genes and intercellular communication in the “oncogeny as partially blocked ontogeny” hypothesis. In: Iversen O.H. (ed.). New Frontiers in Cancer Causation. Washington, DC: Taylor and Francis Publishers, pp. 181–197.Google Scholar
  229. Trosko J.E., Chang C.C., Medcalf A., 1983. Mechanisms of tumor potential role of intercellular communication. Cancer Invest 1:511–526.CrossRefGoogle Scholar
  230. Trosko J.E., Ruch R.J., 1998. Cell-cell communication in carcinogenesis. Front Biosci, 3, d208–d236.Google Scholar
  231. Trosko J.E., Tai M.-H., 2006. Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells. In: Zaenker D.T., Schmidt A. (eds.). Infection and Inflammation: Impacts on Oncogenesis. Contrib Microbio; Basel: Karger, 13:45–65.CrossRefGoogle Scholar
  232. Tsutsumi S., Gotoh T., Tomisato W. et al., 2004. Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell Death Differ 11:1009–1016.CrossRefGoogle Scholar
  233. Tubiana M., Aurengo A., Averbeck D., Bonnin A., Le Guen B., Masse R., Monier R., Valleron A.J., de Vathaire F., 2005. Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation: the joint report of the Academie Des Sciences (Paris) and of the Academie Nationale De Medicine. Int J Radiat Oncol Biol Phys 63(2):317–319.Google Scholar
  234. Ukraintseva S.V., Yashin A.I., 2003. Individual aging and cancer risk: how are they related? Demogr Res 9(8):1163–196.Google Scholar
  235. UNSCEAR, 2000. United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly, with scientific annexes. At: www.unscear.org/unscear/en/publications/2000_1.html.
  236. van’t Veer L.J., Dai H., van de Vijver M.J. et al., 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536.Google Scholar
  237. Vaupel J., Manton K. et al., 1979. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16:439–454.CrossRefGoogle Scholar
  238. Vaupel J.W., Yashin A.I., 1988. Cancer rates over age, time and place: insights from stochastic models of heterogeneous populations. WP#88-01-1 of the Center for Population Analysis and Policy, University of Minnesota, and MPIDR Working Paper WP1999-006.Google Scholar
  239. Volpe E.W., Dix D., 1986. On the role of aging in cancer incidence: cohort analyses of the lung cancer data. Anticancer Res 6(6):1417–1420.Google Scholar
  240. Volterra V., 1926. Variazioni e fluttuazionin del numero d’individui in specie animali conviventi. Mem R Accad Naz dei Lincei Ser VI, 2:31–113.Google Scholar
  241. von Zglinicki T., 1996. Are the ends of chromosomes the beginning of tumor genesis? On the role of telomeres in cancer development. Fortschr Med 114:12–14.Google Scholar
  242. Wagener C., 2001. Molecular oncology: prospects for cancer diagnosis and therapy. Oncology. www.roche.com/pages/downloads/company/pdf/rtpenzberg01e.pdf.
  243. Wallace D.C., 1995. Mitochondrial DNA variation in human evolution, degenerative disease and aging. Am J Hum Genet 57(2):201–223.MathSciNetGoogle Scholar
  244. Wallace D.C., Brown M.D., Lott M.T., 1997. Mitochondrial genetics. In: Rimoin D.L., Connor J.M., Pyeritz R.E., Emery A.E.H. (eds.). Emory and Rimoin’s Principles and Practice of Medical Genetics. London: Churchill Livingstone, pp. 277–332.Google Scholar
  245. Wallace D.C., Shoffner J.M., Watts R.L. et al., 1992. Mitochondrial oxidative phosphorylation defects in Parkinson’s disease. Ann Neurol 32:113–114.CrossRefGoogle Scholar
  246. Warburg O., 1956. On the origin of cancer cells. Science 123:309–314.CrossRefGoogle Scholar
  247. Watson G., 1977. Age incidence curves for cancer. Proc Natl Acad Sci 74:1341–1342.MATHCrossRefGoogle Scholar
  248. Whittemore A., 1977. The age distribution of human cancer for carcinogenic exposures of varying intensity. Am J Epidemiol 106:418–432.Google Scholar
  249. Wrutniak-Cabello C., Casas F., Cabello G., 2001. Thyroid hormone action in mitochondria. J Mol Endocrinol 26:67–77.CrossRefGoogle Scholar
  250. Wu C.W., Yin P.H., Hung W.Y. et al., 2005. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer 44:19–28.CrossRefGoogle Scholar
  251. Yakovlev A.Y., Polig E., 1996. A diversity of responses displayed by a stochastic model of radiation carcinogenesis allowing for cell death. Math Biosci 132:1–33.MATHCrossRefGoogle Scholar
  252. Yakovlev A., Tsodikov A., 1996. Stochastic Models of Tumor Latency and Their Biostatistical Applications. New Jersey: World Scientific.MATHCrossRefGoogle Scholar
  253. Yamada O., Oshimi K., Mizoguchi H., 1993. Telomere reduction in hematologic cells. Int J Hematol 57:181–186.Google Scholar
  254. Yamaguchi H., Wang H-G., 2004. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279(44):45495–45502.CrossRefGoogle Scholar
  255. Yang X.Y., Kimura M., Jeanclos E., Aviv A., 2000. Cellular proliferation and telomerase activity in CHRF-288-11 cells. Life Sci 66:1545–1555.CrossRefGoogle Scholar
  256. Yeh J.J., Lunetta K.L., van Orsouw N.J. et al., 2000. Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNA sequence variants in cases with thyroid tumours. Oncogene 19:2060–2066.CrossRefGoogle Scholar
  257. Yu C., Pan K., Xing D. et al., 2002. Correlation between a single nucleotide polymorphism in the matrix metalloproteinase-2 promoter and risk of lung cancer. Cancer Res 62:6430–6433.Google Scholar
  258. Zanssen S., Gunawan B., Fuzesi L. et al., 2004. Renal oncocytomas with rearrangements involving 11q13 contain breakpoints near CCND1. Cancer Genet Cytogenet 149:120–124.CrossRefGoogle Scholar
  259. Zanssen S., Schon E.A., 2005. Mitochondrial DNA mutations in cancer. PLoS Med 2(11):e401. DOI: 10.1371/journal.pmed.0020401.Google Scholar
  260. Zeviani M., Tiranti V., Piantadosi C., 1998. Reviews in molecular medicine. Mitochondrial disorders. Medicine 77:59–72.CrossRefGoogle Scholar
  261. Zhang N., Wunsch D. II., 2003. An extended Kalman filter (EKF) approach on fuzzy system optimization problem. IEEE Int Conf Fuzzy Syst 2:1465–1470.Google Scholar
  262. Zhivotovsky B., Orrenius S., 2006. Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis Advance Access. New York: Oxford University Press.Google Scholar
  263. Zhu W., Qin W., Bradley P. et al., 2005. Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Carcinogenesis 26:145–152.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • K.G. Manton
    • 1
  • Igor Akushevich
    • 1
  • Julia Kravchenko
    • 1
  1. 1.Duke UniversityDurhamUSA

Personalised recommendations