Nonparametric Density Estimation

  • Alan Julian Izenman
Part of the Springer Texts in Statistics book series (STS)


Nonparametric techniques consist of sophisticated alternatives to traditional parametric models for studying multivariate data. What makes these alternative techniques so appealing to the data analyst is that they make no specific distributional assumptions and, thus, can be employed as an initial exploratory look at the data. In this chapter, we discuss methods for nonparametric estimation of a probability density function.


Kernel Density Density Estimator Window Width Kernel Density Estimate Kernel Density Estimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alan Julian Izenman
    • 1
  1. 1.Department of StatisticsTemple UniversityPhiladelphiaUSA

Personalised recommendations