Skip to main content

Types of Confocal Instruments: Basic Principles and Advantages and Disadvantages

  • Chapter
  • First Online:

Abstract

As noted in Sect. 1.2 of Chap. 1, several types of confocal microscopes have been introduced over the years. These can be broken down into three basic categories: Single-photon point-scanning confocal systems, multiphoton (nonlinear) point-scanning confocal systems, and spinning-disk confocal systems. New developments are continually being added to the hardware and software of these microscopes to improve their performance, but the majority of confocal systems will fall into one of these groups.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbe E. 1884. Note on the proper definition of the amplifying power of a lens or lens system. J Roy. Microsc. Soc. 4(2):348–351.

    Google Scholar 

  • Centonze, V., and J. White. 1998. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J. 75:2015–2024.

    Article  PubMed  CAS  Google Scholar 

  • Corle, T.R., Mallory, CL., Wasserman TD. 1991. Improved confocal scanning microscope. U.S. Patent 5,067,805 (Nov. 26, 1991).

    Google Scholar 

  • Denk, W., J. Strickler, and W. Webb. 1990. Two-photon laser scanning fluorescence microscopy. Science. 248:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Denk, W., D. Piston, and W. Webb. 1995. Two-photon molecular excitation in laser-scanning microscopy. In Handbook of Biological Confocal Microscopy, Second Edition. Pawley, J., editor. Plenum, New York, 445–458.

    Google Scholar 

  • Gauderon, R., P. Lukins, and C. Sheppard. 1999. Effect of a confocal pinhole in two-photon microscopy. Micros Res Tech. 47:210–215.

    Article  CAS  Google Scholar 

  • Genka, C., Ishida, H., Ichimori, K., Hirota, Y., Tanaami, T., Nakazawa, H. 1999. Visualization of biphasic Ca2+ diffusion from cytosol to nucleus in contracting adult rat cardiac myocytes with an ultra-fast confocal imaging system. Cell Calcium. 25:199–208.

    Article  CAS  Google Scholar 

  • Gerritsen, H., and C. deGrauw. 1999. Imaging of optically thick specimens using two-photon excitation microscopy. Micros Res Tech. 47:206–209.

    Article  CAS  Google Scholar 

  • Goodman, J.W. 1968. Introduction to Fourier optics. McGraw Hill, New York

    Google Scholar 

  • Göppert-Mayer, M. 1931. Uber Elementarakte mit zei Quantenspruengen. Ann Physik (Berlin). 9:273–294.

    Article  Google Scholar 

  • Ichihara, A., Tanaami, T., Isozaki, K., Sugiyama, Y., Kosugi, K., Mikuriya, K., Abe, M., Umeda, I. 1996. High-speed confocal fluorescence microscopy using a Nipkow scanner with microlens for 3-d imaging of a single fluorescent molecule in real time. Bioimages 4:57–62.

    Google Scholar 

  • Kino, G.S. 1995. Intermediate optics in Nipkow disk microscope. In: Handbook of Biological Confocal Microscopy. J.B. Pawley, ed. Plenum Press, New York. pp 155–165.

    Google Scholar 

  • Kino, G.S., Xiao, G.Q. 1990. Rea-time scanning optical microscopes. In: Scanning Optical Microscopes. T. Wilson ed., Pergamon Press, London, pp. 361–387.

    Google Scholar 

  • Nakano, A. 2002. Spinning-disk confocal microscopy – A cutting edge tool for imaging of membrane traffic. Cell Struct. Funct. 27:349–355.

    Article  PubMed  Google Scholar 

  • Nipkow, P. 1884. German Patent no. 30105. Germany.

    Google Scholar 

  • Petrán M., Hadravsky, M., Egger, M.D., Galambos, R. 1968. Tandem scanning reflected light microscope. J. Opt.Soc. Am. 58:661–664.

    Article  Google Scholar 

  • Petrán, M., Hadravsky M., Boyde, A. 1985. The tandem scanning reflected light microscope. Scanning, 7:97–108.

    Google Scholar 

  • Piston, D. 1999. Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol. 9:66–69.

    Article  PubMed  CAS  Google Scholar 

  • Tanaami, T., Otsuki, S., Tomosada N., Kosugi, Y., Shimizu, M., Ishida, H. 2002. High-speed 1 frame/ms scanning confocal microscope with a microlens and Nipkow disk. Applied Optics. 41:4704–  4708.

    Article  PubMed  Google Scholar 

  • Xiao, G.Q., Corle, T.R., Kino G.S. 1988. Real time confocal scanning microscope. Applied Phys Lett. 53:716–718.

    Article  Google Scholar 

  • Xiao, G.Q., & Kino, G.S. 1987. “A real-time confocal scanning optical microscope,” Proc. SPIE, Vol 809, Scanning Imaging Technology, T. Wison & L. Balk, eds 107–113.

    Google Scholar 

  • Xiao, G.Q., Kino, G.S., Masters, B.R. 1990. Observation of the rabbit cornea and lens with a new real time confocal scanning optical microscope. Scanning. 12:161–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Price .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fuseler, J., Jerome, W.G., Price, R.L. (2011). Types of Confocal Instruments: Basic Principles and Advantages and Disadvantages. In: Price, R., Jerome, W. (eds) Basic Confocal Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78175-4_8

Download citation

Publish with us

Policies and ethics