Advertisement

Labeling Considerations for Confocal Microscopy

Chapter
  • 3.5k Downloads

Abstract

Some components of biological systems can be readily identified solely by their unique structure or other intrinsic physical properties which are evident when visualized in brightfield or various types of interference-based light microscopy (LM). However, for the unambiguous identification and localization of most biological molecular or macromolecular elements within a structural framework, some type of staining/labeling must be employed. This is important for a variety of applications including identification of particular tissues, identification of cells and subcellular components/structures, tracking of cells or subcellular components, and co-localization of cells and cellular components on or within tissues or cells. Labeling is also used to provide quantitative comparisons of epitope density, cell numbers, organelle numbers or volume, and a variety of other types of quantitative data. However, considerable caution must be taken when attempting quantitative or even semi-quantitative analyses. Efficiencies of labeling for different epitopes and antibodies or antibody mixtures vary. The exact relationship of color density, particle numbers, or fluorescence intensity (which can fade during observation), to the actual numbers of labeled sites is critical and often not known. These factors often make quantitative estimations or comparisons very risky.

Keywords

Affinity Antibodies Avidity Cross-reactivity Epitopes Emission Excitation Fluorochrome Quantum efficiency 

References

  1. Albrecht, R.M., and Meyer, D.A. 2008. Molecular labeling for correlative microscopy: LM, LVSEM, TEM, EF-TEM, and HVEM. Ch 6, Low Voltage Scanning Electron Microscopy. H. Schatten and J. Pawley (eds) Springer Science, New York, 171–196.Google Scholar
  2. Bruchez, Jr., M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016.PubMedCrossRefGoogle Scholar
  3. Chalfie, M., tyu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802–805.Google Scholar
  4. Chan, W.C.W., Nie, S. 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018.PubMedCrossRefGoogle Scholar
  5. Criscitiello, M.F. and Flajnik, MF. 2007. Four primordial immunoglobulin light chain isotypes, including lambda and kappa, identified in the most primitive living jawed vertebrates. Eur J Immunol. 37(10):2683–2694.PubMedCrossRefGoogle Scholar
  6. Cummings, R.D., Etzler, M.E. 2009. Antibodies and lectins in glycan analysis. Ch. 45, Essentials of Glycobiology, Second Edition. A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R Bertozzi, G.W. Hart, M.E. Etzler (eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 633–648.Google Scholar
  7. Eppell, S.J., Simmons, S.R., Albrecht, R.M., and Marchant, R.E. 1995. Cell surface receptors and proteins on platelet membranes imaged by scanning force microscopy using immunogold contrast enhancement. Biophysical J. 68:671–680.CrossRefGoogle Scholar
  8. French, D.L., Laskov, R., Scharff, M.D. 1989. The role of somatic hypermutation in the generation of antibody diversity. Science 244:1152–1157.PubMedCrossRefGoogle Scholar
  9. Green, N.M. 1963. Avidin 1. The use of [14C]biotin for kinetic studies and for assay. Biochem J, 89:585–591.PubMedGoogle Scholar
  10. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers,C., Bajyana Songa, E., Bendahman, N. and Hamers, R. 1993. Naturally occurring antibodies devoid of light chains. Nature 363:446–448.PubMedCrossRefGoogle Scholar
  11. Hansen, J.D., Landis, E.E. and Phillips, R.B. 2005. Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: Implications for a distinctive B cell developmental pathway in teleost fish. Proc Natl Acad Sci U S A. 102(19): 6919–6924.PubMedCrossRefGoogle Scholar
  12. Heim, R., Cubitt, A., and Tsien, R. 1995. Improved green fluorescence. Nature 373 (6516): 663–664.PubMedCrossRefGoogle Scholar
  13. Heim, R., and Tsien, R.Y. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182.PubMedCrossRefGoogle Scholar
  14. Horsfall, A.C., Hay, F.C., Soltys, A.J., Jones, M.G. 1991. Epitope mapping. Immunol Today 12:211–213.PubMedCrossRefGoogle Scholar
  15. Huston, J.S., Levinson, D., Mudgett-Hunter, M., Tai, M-S., Novotny, J., Maroglies, M.N., Ridge, R.J., bruccoleri, R.E., Haber, E., Crea, R., Oppermann, H. 1988. Protein engineering of anitbody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 85:5879–5883.Google Scholar
  16. Kandela, I.K., Bleher, R., and Albrecht, R.M. 2007. Multiple correlative immunolabeling for light and electron microscopy using fluorophores and colloidal metal particles. J Histochem Cytochem 55(10):983–990.PubMedCrossRefGoogle Scholar
  17. Kandela, I.K., and Albrecht, R.M. 2007. Fluorescence quenching by colloidal heavy metal nanoparticles: Implications for correlative fluorescence and electron microscopic studies. Scanning 29:152–161.PubMedCrossRefGoogle Scholar
  18. Kandela, I.K., Bleher, R., and Albrecht, R.M. 2008. Correlative light and electron microscopy imunolabeling on ultrathin cryosections of skeletal muscle tissue. Microsc Microanal 14:159–165.PubMedCrossRefGoogle Scholar
  19. Kindt, T.J., Goldsby, R.A., and Osborn, B.A. eds., 2007. Kuby Immunology, 6th edition, WH Freeman and Company, New York, 2007.Google Scholar
  20. Linscotts Directory of Immunological and Biological Reagents. 2010 Linscotts USA. https://www.linscottsdirectory.com.
  21. Lubeck, M.D., Steplewski, Z., Baglia, F., Klein, M.H., Dorrington, K.J., and Koprowski, H. 1985. The interaction of murine IgG subclass proteins with human monocyte Fc receptors. J. Immunol 135:1299–1304.PubMedGoogle Scholar
  22. McCafferty, J., Griffiths, A.D., Winter, G., Chiswell, D.J. 1990. Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348:552–554.PubMedCrossRefGoogle Scholar
  23. Nilson, B.H.K., Lögdberg, L., Kastern, W., Björck, L., Åkerström, B. 1993. Purification of antibodies using protein L-binding framework structures in the light chain variable domain, J Immunol Methods, 164:33–40.PubMedCrossRefGoogle Scholar
  24. Reiter, Y., Brinkmann, U., Jung, S-H., Lee, B., Kasprysyk, P.G., King, C.R., and Pastan, I. 1994. Improved binding and antitumor activity of a recombinant anti-erbB2 immunotoxin by disulfide stabilization of the Fv fragment. J Biol Chem 269:18327–18331.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Animal Sciences; Pediatrics; and Pharmaceutical SciencesUniversity of Wisconsin – MadisonMadisonUSA

Personalised recommendations