Skip to main content

Inferences About Landbird Abundance from Count Data: Recent Advances and Future Directions

  • Chapter
Modeling Demographic Processes In Marked Populations

Part of the book series: Environmental and Ecological Statistics ((ENES,volume 3))

Abstract

We summarize results of a November 2006 workshop dealing with recent research on the estimation of landbird abundance from count data. Our conceptual framework includes a decomposition of the probability of detecting a bird potentially exposed to sampling efforts into four separate probabilities. Primary inference methods are described and include distance sampling, multiple observers, time of detection, and repeated counts. The detection parameters estimated by these different approaches differ, leading to different interpretations of resulting estimates of density and abundance. Simultaneous use of combinations of these different inference approaches can not only lead to increased precision but also provides the ability to decompose components of the detection process. Recent efforts to test the efficacy of these different approaches using natural systems and a new bird radio test system provide sobering conclusions about the ability of observers to detect and localize birds in auditory surveys. Recent research is reported on efforts to deal with such potential sources of error as bird misclassification, measurement error, and density gradients. Methods for inference about spatial and temporal variation in avian abundance are outlined. Discussion topics include opinions about the need to estimate detection probability when drawing inference about avian abundance, methodological recommendations based on the current state of knowledge and suggestions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alldredge MW, Pollock KH, Simons TR, Shriner SA (2007b) Multiple species analysis of point count data: a more parsimonious modeling framework. J. Appl. Ecol. 44:281–290.

    Google Scholar 

  • Alldredge MW, Simons TR, Pollock KH (2007c) Factors affecting aural detections of songbirds. Ecol. Appl. 17:948-955.

    Google Scholar 

  • Alldredge MW, Pollock KH, Simons TR (2006) Estimating detection probabilities from multiple-observer point counts. Auk 123:1172–1182.

    Google Scholar 

  • Alldredge MW, Pollock KH, Simons TR, Collazo JA, Shriner SA (2007a) Time of detection method for estimating abundance from point count surveys. Auk 124:653-664.

    Google Scholar 

  • Alpizar-Jara R, Pollock KH (1996) A combination line transect and capture–recapture sampling model for multiple observers in aerial surveys. Environ. Ecol. Stat. 3:311–327.

    Article  Google Scholar 

  • Alpizar-Jara R, Pollock KH (1999) Combining line transect and capture–recapture for mark-resighting studies. Pages 99–114 in Garner GW, Amstrup SC, Laake JL, Manly BFJ, McDonald LL, Robertson DG (eds.) Marine mammal survey and assessment methods. Balkema, Rotterdam.

    Google Scholar 

  • Anderson DR (2001) The need to get the basics right in wildlife field studies. Wildl. Soc. Bull. 29:1294–1297.

    Google Scholar 

  • Bart J, Earnst S (2002) Double sampling to estimate density and population trends in birds. Auk 119:36–45.

    Google Scholar 

  • Besbeas P, Freeman SN, Morgan BJT (2005) The potential for integrated population modeling. Aust. N.Z. J. Stat. 47:35–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Blondel J, Ferry C, Frochot B (1970) La methode des indices ponctuels d’abondance (IPA) ou des releves d’avifaune par “stations d’ecoute.” Alauda 41:63–84.

    Google Scholar 

  • Borchers DL (1999) Composite mark-recapture line transect surveys. Pages115–126 in Garner GW, Amstrup SC, Laake JL, Manly BFJ, McDonald LL, Robertson DG (eds.) Marine mammal survey and assessment methods. Balkema, Rotterdam.

    Google Scholar 

  • Borchers DL, Buckland ST, Goedhart PW, Clarke ED, Hedley SL (1998a) Horvitz–Thompson etsimators for double-platform line transect surveys. Biometrics 54:1221–1237.

    Google Scholar 

  • Borchers DL, Buckland ST, Zucchini W (2002) Estimating animal abundance. Springer, New York.

    Book  MATH  Google Scholar 

  • Borchers DL, Efford MG. Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics (in press).

    Google Scholar 

  • Borchers DL, Laake JL, Southwell C, Paxton CGM (2006) Accommodating unmodeled heterogeneity in double-observer distance sampling surveys. Biometrics 62:372–378.

    Article  MathSciNet  Google Scholar 

  • Borchers DL, Marques TA, Gunnlaugsson T, Víkingsson GA. Distance sampling with measurement errors. (in prep.).

    Google Scholar 

  • Borchers DL, Zucchini W, Fewster RM (1998b) Mark-recapture models for line transect surveys. Biometrics 54:1207–1220.

    Google Scholar 

  • Bravington MV, Hedley SL, Wood SN. A general approach for modelling clustered line transect data using gamma random fields. (in prep.)

    Google Scholar 

  • Buckland ST (2006) Point transect surveys for songbirds: robust methodologies. Auk 123: 345–357.

    Article  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL (1993) Distance sampling: estimating abundance of biological populations. Chapman and Hall, London, UK.

    Book  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling. Oxford University Press, Oxford, UK.

    MATH  Google Scholar 

  • Buckland ST, Borchers DL, Johnston A, Henrys PA, Marques TA (2007a) Line transect methods for plant surveys. Biometrics 63:989–998.

    Google Scholar 

  • Buckland ST, Newman KB, Fernández C, Thomas L, Harwood J (2007b) Embedding population dynamics models in inference. Stat. Sci. 22:44–58.

    Google Scholar 

  • Buckland ST, Summers RW, Borchers DL, Thomas L (2006) Point transect sampling with traps or lures. J. Appl. Ecol. 43:377–384.

    Article  Google Scholar 

  • Burnham KP, Anderson DR, Laake JL (1980) Estimation of density from line transect sampling of biological populations. Wildl. Monogr. 72:1–202.

    Google Scholar 

  • Burnham KP, Anderson DR, Laake JL (1981) Line transect estimation of bird population density using a Fourier series. Stud. Avian Biol. 6:466–482.

    Google Scholar 

  • Burnham KP, Buckland ST, Laake JL, Borchers DL, Marques TA, Bishop JRB, Thomas L (2004) Further topics in distance sampling. Pages 307–392 in Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L, eds. Advanced distance sampling. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Carothers AD (1973) The effects of unequal catchability on Jolly-Seber estimates. Biometrics 29:79–100.

    Article  Google Scholar 

  • Carothers AD (1979) Quantifying unequal catchability and its effect on survival estimates in an actual population. J. Anim. Ecol. 48:863–869.

    Article  Google Scholar 

  • Carroll RJ, Lombard F (1985) A note on N estimators for the binomial distribution. J. Amer. Stat. Assoc.80:423–426.

    MathSciNet  Google Scholar 

  • Cochran WG (1977) Sampling techniques. Third ed. Wiley, New York, USA.

    MATH  Google Scholar 

  • Conn PB, Bailey LL, Sauer JR (2004) Indexes as surrogates to abundance for low-abundance species. Pages 59–74 in Thompson WL (ed.) Sampling rare or elusive species. Island Press, Washington, DC, USA.

    Google Scholar 

  • Cook RD, Jacobsen JO (1979) A design for estimating visibility bias in aerial surveys. Biometrics 35:735–742.

    Article  Google Scholar 

  • Diefenbach DR, Marshall MR, Mattice JA, Brauning DW (2007) Incorporating availability for detection in estimates of bird abundance. Auk 124:96-106.

    Google Scholar 

  • Dorazio RM, Royle JA (2005) Estimating the size and composition of biological communities by modeling the occurrence of species. J. Amer. Stat. Assoc. 100:389–398.

    Article  MATH  MathSciNet  Google Scholar 

  • Efford MG (2004) Density estimation in live-trapping studies. Oikos 106:598–610.

    Article  Google Scholar 

  • Efford MG, Dawson DK. The effect of distant - related heterogeneity on population size estimates from point counts (in prep.)

    Google Scholar 

  • Efford MG, Warburton B, Coleman MC, Barker RJ (2005) A field test of two methods for density estimation. Wildl. Soc. Bull. 33:731–738.

    Article  Google Scholar 

  • Ellingson AR, Lukacs PM (2003) Improving methods for regional landbird monitoring: a reply to Hutto and Young. Wildl. Soc. Bull. 31:896–902.

    Google Scholar 

  • Emlen JT (1971) Population densities of birds derived from transect counts. Auk 88:323–342.

    Article  Google Scholar 

  • Farnsworth GL, Nichols JD, Sauer JR, Fancy SG, Pollock KH, Shriner SA, Simons TR (2005) Statistical approaches to the analysis of point count data: a little extra information can go a long way. Pages 736–743 in Ralph CJ, Rich TD (eds.) Bird Conservation Implementation and Integration in the Americas: Proceedings of the 3rd International Partners in Flight Conference. Volume 2. Gen. Tech. Rep. PSW-GTR-191. Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture: Albany, CA.

    Google Scholar 

  • Farnsworth GL, Pollock KH, Nichols JD, Simons TR, Hines JE, Sauer JR (2002) A removal model for estimating detection probabilities from point count surveys. Auk 119:414–425.

    Google Scholar 

  • Gilbert RO (1973) Approximations of the bias in the Jolly-Seber capture–recapture model. Biometrics 29:501–526.

    Article  MathSciNet  Google Scholar 

  • Hedley SL (2000) Modelling heterogeneity in cetacean surveys. Ph.D. thesis, Univ. St. Andrews, St. Andrews, Scotland, UK.

    Google Scholar 

  • Hedley SL, Buckland ST (2004) Spatial models for line transect sampling. J. Agric. Biol. Environ. Stat. 9:181–199.

    Article  Google Scholar 

  • Hedley SL, Buckland ST, Borchers DL (2004) Spatial distance sampling models. Pages 48–70 in Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (eds.) Advanced distance sampling. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Hiby L, Lovell P (1998) Using aircraft in tandem formation to estimate abundance of harbour porpoise. Biometrics 54:1280–1289.

    Article  MATH  Google Scholar 

  • Hobson KA, Rempel RS, Greenwood H, Turnbull B, Van Wilgenburg SL (2002) Acoustic surveys of birds using electronic recordings: new potential from an omnidirectional microphone system. Wildl. Soc. Bull. 30:709–720.

    Google Scholar 

  • Hutto RL, Young JS (2002) Regional landbird monitoring: perspectives from the northern Rocky Mountains. Wildl. Soc. Bull. 30:738–750.

    Google Scholar 

  • Hutto RL, Young JS (2003) On the design of monitoring programs and the use of population indices: a reply to Ellingson and Lukacs. Wildl. Soc. Bull. 31:903–910.

    Google Scholar 

  • Jarvinen O, Vaisanen RA (1975) Estimating relative densities of breeding birds by the line transect method. Oikos 26:316–322.

    Article  Google Scholar 

  • Jolly GM, Dickson JM (1983) The problem of unequal catchability in mark-recapture estimation of small mammal populations. Can. J. Zool. 61:922–927.

    Article  Google Scholar 

  • Kendall WL, Nichols JD, Hines JE (1997) Estimating temporary emigration and breeding proportions using capture–recapture data with Pollock’s robust design. Ecology 78:563–578.

    Google Scholar 

  • Kery M, Royle JA, Schmid H (2005) Modeling avian abundance from replicated counts using binomial mixture models. Ecol. Appl. 1450–1461.

    Google Scholar 

  • Kissling ML, Garton EO (2006) Estimating detection probability and density from point-count surveys: a combination of distance and double-observer sampling. Auk 123: 735–752.

    Article  Google Scholar 

  • Laake JL, Borchers DL (2004) Methods for incomplete detection at distance zero. Pages 108–189 in Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (eds.) Advanced distance sampling. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Lancia RA, Kendall WL, Pollock KH, Nichols JD (2005) Estimating the number of animals in wildlife populations. Pages 106–153 in Braun CE ed. Research and management techniques for wildlife and habitats. The Wildlife Society, Bethesda, MD, USA.

    Google Scholar 

  • Lancia RA, Nichols JD, Pollock KH (1994) Estimating the number of animals in wildlife populations. Pages 215–253 in Bookhout T (ed.) Research and management techniques for wildlife and habitats. The Wildlife Society, Bethesda, MD, USA.

    Google Scholar 

  • Link WA (2003) Nonidentifiability of population size from capture–recapture data with heterogeneous detection probabilities. Biometrics 59:1123–1130.

    Article  MATH  MathSciNet  Google Scholar 

  • Link WA, Sauer JR (1997) Estimation of population trajectories from count data. Biometrics 53:499–497.

    Article  Google Scholar 

  • Link WA, Sauer JR (1998) Estimating relative abundance from count data.Austrian J. Stat. 27: 83–97.

    Google Scholar 

  • Link WA, Sauer JR (2002) A hierarchical analysis of population change with application to Cerulean Warblers. Ecology 83:2832–2840.

    Article  Google Scholar 

  • Link WA, Sauer JR (2007) Seasonal components of avian population change: joint analysis of two large-scale monitoring programs. Ecology 88:49–55.

    Article  Google Scholar 

  • Mackenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy when detection probabilities are less than one. Ecology 83: 2248–2255.

    Article  Google Scholar 

  • Mackenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LA, Hines JE (2006) Occupancy modeling and estimation. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • MacKenzie DI, Royle JA (2005) Designing occupancy studies: general advice and allocating survey effort. J. Appl. Ecol. 42:1105–1114.

    Article  Google Scholar 

  • Manly, B.F.J., McDonald LL, Garner GW (1996) Maximum likelihood estimation for the double-count method with independent observers. J. Agric. Biol. Environ. Stat. 1: 170–189.

    Article  MathSciNet  Google Scholar 

  • Marques TA (2004) Predicting and correcting bias caused by measurement error in line transect sampling using multiplicative error models. Biometrics 60:757–763.

    Article  MathSciNet  Google Scholar 

  • Marques TA (2008) Incorporating measurement error density gradients in distance sampling surveys. Ph.D. thesis, Univ. St. Andrews, St. Andrews, Scotland, UK.

    Google Scholar 

  • Marques TA, Thomas L, Fancy SG, Buckland ST (2007) Improving estimates of bird density using multiple covariate distance sampling. Auk (124:1229-1245).

    Article  Google Scholar 

  • Marsh H, Sinclair DF (1989) Correcting for visibility bias in strip transect aerial surveys of aquatic fauna. J. Wildl. Manage. 53:1017–1024.

    Article  Google Scholar 

  • Newman KB, Buckland ST, Lindley ST, Thomas L, Fernández C (2006) Hidden process models for animal population dynamics. Ecol. Appl. 16:74–86.

    Article  Google Scholar 

  • Nichols JD, Hines JE, Sauer JR, Fallon FW, Fallon JE, Heglund PJ (2000) A double-observer approach for estimating detection probability and abundance from point counts. Auk 117: 393–408.

    Google Scholar 

  • Nichols JD, Pollock KH (1983) Estimation methodology in contemporary small mammal capture–recapture studies. J. Mammal. 64:253–260.

    Article  Google Scholar 

  • Norris III JL, Pollock KH (1996) Nonparametric MLE under two closed capture–recapture models with heterogeneity. Biometrics 52:639–649.

    Article  MATH  Google Scholar 

  • Okamura H, Minamikawa S, Kitakado T (2006) Effect of surfacing patterns on abundance estimates of long-diving animals. Fish. Sci. 72:631–638.

    Article  Google Scholar 

  • Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62:1–35.

    Google Scholar 

  • Pledger S (2000) Unified maximum likelihood estimates for closed capture–recapture models for mixtures. Biometrics 56:434–442.

    Article  MATH  Google Scholar 

  • Pollock KH (1982) A capture–recapture design robust to unequal probability of capture. J. Wildl. Manage. 46:757–760.

    Article  Google Scholar 

  • Pollock KH, Nichols JD, Simons TR, Farnsworth GR, Bailey LL, Sauer JR (2002) Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13: 1–15.

    Article  Google Scholar 

  • Ralph CJ, Sauer JR, Droege S (eds.) (1995) Monitoring bird populations by point counts. Gen. Tech., Rep. PSW-GTR-149. U.S. Forest Service Pacific Southwest Research Station, Albany, CA, USA.

    Google Scholar 

  • Ralph CJ, Scott JM (eds.) (1981) Estimating numbers of terrestrial birds. Stud. Avian Biol. No. 6:1–630.

    Google Scholar 

  • Ramsey FL, Scott JM (1979) Estimating population densities from variable circular plot surveys. Pages 155–181 in Cormack RM, Patil GP, Robson DS (eds.) Sampling biological populations. Statistical Ecology Series, Vol. 5, International Cooperative Publication House, Fairland, MD, USA.

    Google Scholar 

  • Rosenstock SS, Anderson DR, Giesen KM, Leukering T, Carter MF (2002) Landbird counting techniques: current practices and an alternative. Auk 119:46–53.

    Google Scholar 

  • Royle JA (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60:108–115.

    Article  MATH  MathSciNet  Google Scholar 

  • Royle JA, Nichols JD (2003) Estimating abundance from repeated presence absence data or point counts. Ecology 84:777–790.

    Article  Google Scholar 

  • Royle JA, Nichols JD, Kery M (2005) Modeling occurrence and abundance of species when detection is imperfect. Oikos 110:353–359.

    Article  Google Scholar 

  • Sauer JR, Link WA (2002) Hierarchical modeling of population stability and species group attributes from survey data. Ecology 86:1743–1751.

    Article  Google Scholar 

  • Seber GAF (1982) The estimation of animal abundance and related parameters. Second ed. MacMillian Publication Co., Inc., New York, USA.

    Google Scholar 

  • Simons TR, Alldredge MW, Pollock KH, Wettroth JM (2007) Experimental analysis of the auditory detection process on avian point counts. Auk 124:986-999.

    Article  Google Scholar 

  • Skalski JR, Robson DS (1992) Techniques for wildlife investigations. Academic Press, San Diego, USA.

    Google Scholar 

  • Smith GW (1995) A critical review of the aerial and ground surveys of breeding waterfowl in North America. U.S. Dept. Interior, Biological Science Report 5. Washington, DC, USA.

    Google Scholar 

  • Spiegelhalter DJ, Thomas A, Best NG, Gilks WR (1995) BUGS: Bayesian inference using Gibbs sampling. Version 0.50. MRC Biostatistics Unit, Cambridge, UK.

    Google Scholar 

  • Strindberg S, Buckland ST, Thomas L (2004) Design of distance sampling surveys and geographic information systems. Pages 190–228 in Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (eds.) Advanced distance sampling. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Thomas L, Borchers DL, Buckland ST, Hammond IE. Estimation of population size from distance sampling data with heterogenous detection probabilities. (in prep.)

    Google Scholar 

  • Thomas L, Buckland ST, Newman KB, Harwood J (2005) A unified framework for modelling wildlife population dynamics. Aust. N. Z. J. Stat. 47:19–34.

    Article  MATH  MathSciNet  Google Scholar 

  • Thomas L, Burnham KP, Buckland ST (2004) Temporal inferences from distance sampling surveys. Pages 71–107 in Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (eds.) Advanced distance sampling. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Thompson SK (2002a) Sampling. Wiley, New York, USA.

    Google Scholar 

  • Thompson WL (2002b) Towards reliable bird surveys: accounting for individuals present but not detected. Auk 119:18–25.

    Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San Diego, USA.

    Google Scholar 

  • Wood SN, Bravington MV, Hedley SL. Soap film smoothing. J. Royal Stat. Soc. Ser. B. (in press).

    Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol. Evol. 16:446–453.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Nichols .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nichols, J.D., Thomas, L., Conn, P.B. (2009). Inferences About Landbird Abundance from Count Data: Recent Advances and Future Directions. In: Thomson, D.L., Cooch, E.G., Conroy, M.J. (eds) Modeling Demographic Processes In Marked Populations. Environmental and Ecological Statistics, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78151-8_9

Download citation

Publish with us

Policies and ethics