Skip to main content

Part of the book series: Environmental and Ecological Statistics ((ENES,volume 3))

Abstract

A challenge for integrated population methods is to examine the extent to which different surveys that measure different demographic features for a given species are compatible. Do the different pieces of the jigsaw fit together? One convenient way of proceeding is to generate a likelihood for census data using the Kalman filter, which is then suitably combined with other likelihoods that might arise from independent studies of mortality, fecundity, and so forth. The combined likelihood may then be used for inference. Typically the underlying model for the census data is a state-space model, and capture–recapture methods of various kinds are used to construct the additional likelihoods. In this paper we provide a brief review of the approach; we present a new way to start the Kalman filter, designed specifically for ecological processes; we investigate the effect of break-down of the independence assumption; we show how the Kalman filter may be used to incorporate density-dependence, and we consider the effect of introducing heterogeneity in the state-space model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baillie SR, Green RE (1987) The importance of variation in recovery rates when estimating survival rates from ringing recoveries. Acta Ornithol. 23:41–60.

    Google Scholar 

  • Barker RJ, Kavalieris L (2001) Efficiency gain from auxiliary data requiring additional nuisance parameters. Biometrics 57:563–566.

    Article  MATH  MathSciNet  Google Scholar 

  • Barry SC, Brooks SP, Catchpole EA, Morgan BJT (2003) The analysis of ring-recovery data using random effects. Biometrics 59:54–65.

    Article  MATH  MathSciNet  Google Scholar 

  • Besbeas P, Freeman SN, Morgan BJT (2005) The potential of integrated population modelling. Aust. N. Z. J. Stat. 47:35–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Besbeas P, Freeman SN, Morgan BJT, Catchpole EA (2002) Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58:540–547.

    Article  MATH  MathSciNet  Google Scholar 

  • Besbeas P, Lebreton J-D, Morgan BJT (2003) The efficient integration of abundance and demographic data. Appl. Stat. 52:95–102.

    MATH  MathSciNet  Google Scholar 

  • Besbeas P, Morgan BJT (2006) Kalman filter initialization for modelling population dynamics. Submitted for publication.

    Google Scholar 

  • Brooks SP, King R, Morgan BJT (2004) A Bayesian approach to combining animal abundance and demographic data. Anim, Biodivers. Conserv. 27:515–529.

    Google Scholar 

  • Burnham KP, Rexstad EA (1993) Modeling heterogeneity in survival rates of banded waterfowl. Biometrics 49:1194–1208.

    Article  MATH  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation. 2nd edition. Sinauer Association, Sunderland, MA.

    Google Scholar 

  • Chen G (Ed.) (1993) Approximate Kalman filtering. World Scientific Publishers, Singapore.

    Google Scholar 

  • Clark JS, Ferraz G, Oguge N, Hays H, Di Costanzo J (2005) Hierarchical Bayes for structured, variable populations: from recapture data to life-history prediction. Ecology 86:2232–2244.

    Article  Google Scholar 

  • Crowder MJ (1978) Beta-binomial ANOVA for proportions. Appl. Stat. 27:34–37.

    Article  Google Scholar 

  • de Jong P (1991) The diffuse Kalman filter. Ann. Statist. 19:1073–1083.

    Article  MATH  MathSciNet  Google Scholar 

  • Dennis B, Ponciano JM, Lele SR, Taper ML, Staples DF (2006) Estimating density dependence, process noise, and observation error. Ecol. Monogr. 76:323–341.

    Article  Google Scholar 

  • de Valpine P (2002) Review of methods for fitting time-series models with process and observation error and likelihood calculations for nonlinear, non-Gaussian state-space models. Bull. Mar. Sci. 70:455–471.

    Google Scholar 

  • de Valpine P (2003) Better inferences from population-dynamics experiments using Monte Carlo state-space likelihood methods. Ecology 84:3064–3077.

    Article  Google Scholar 

  • de Valpine P (2004) Monte Carlo state-space likelihoods by weighted posterior kernel density estimation. J. Am. Stat. Assoc. 99:523–534.

    Article  MATH  Google Scholar 

  • de Valpine P, Hastings A (2003) Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72:57–76.

    Article  Google Scholar 

  • de Valpine P, Hilborn R (2005) State-space likelihoods for nonlinear fisheries time-series. Can. J. Fish. Aquat. Sci. 62:1937–1952.

    Article  Google Scholar 

  • Durbin J, Koopman SJ (2001) Time series analysis by state space methods. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Freeman SN, Morgan BJT (1992) A modelling strategy for recovery data from birds ringed as nestlings. Biometrics 48:217–236.

    Article  Google Scholar 

  • Gauthier G, Besbeas P, Lebreton J-D, Morgan BJT (2007) Population growth in Greater Snow Geese: a modelling approach integrating demographic and population survey information. Ecology 88(6):1420–1429.

    Google Scholar 

  • Gomez V, Maravall A (1993) Initializing the Kalman filter with incompletely specified initial conditions. pp 39–63 In Approximate Kalman filtering. Chen G. (Ed.). World Scientific Publishers, Singapore.

    Chapter  Google Scholar 

  • Hall AJ, McConnell BJ, Barker RJ (2001) Factors affecting first-year survival in grey seals and their implications for life history strategy. J. Anim. Ecol. 70:138–149.

    Article  Google Scholar 

  • Harvey AC (1989) Forecasting, structural time series models and the Kalman filter. Cambridge University Press, Cambridge.

    Google Scholar 

  • Harvey AC, Phillips GDA (1979) Maximum-likelihood estimation of regression models with autoregressive-moving average disturbances. Biometrika 66:49–58.

    MATH  MathSciNet  Google Scholar 

  • Koopman SJ, Durbin J (2003) Filtering and smoothing of state vector for diffuse state-space models. J. Time Ser. Anal. 24:85–98.

    Article  MATH  MathSciNet  Google Scholar 

  • Meinhold RJ, Singpurwalla ND (1983) Understanding the Kalman filter. Am Statist. 37:123–127.

    Google Scholar 

  • Meyer R, Millar RB (1999) BUGS in Bayesian stock assessments. Can. J. Fish Aquat. Sci. 56:1078–1086.

    Article  Google Scholar 

  • Millar RB, Meyer R (2000a) Bayesian state-space modeling of age-structured data: fitting a model is just the beginning. Can J. Fish. Aquat. Sci. 57:43–50.

    Article  Google Scholar 

  • Millar RB, Meyer R (2000b) Non-linear state space modelling of fisheries biomass dynamics by using Metropolis-Hastings within-Gibb sampling. Appl. Stat. 49:327–342.

    MATH  MathSciNet  Google Scholar 

  • Morgan BJT, Freeman SN (1989) A model with first-year variation for ring-recovery data. Biometrics 45:1087–1102.

    Article  MATH  Google Scholar 

  • North PM, Morgan BJT (1979) Modelling heron survival using weather data. Biometrics 35: 667–682.

    Article  MathSciNet  Google Scholar 

  • Pollock KH, Raveling DG (1982) Assumptions of modern band-recovery models, with emphasis on heterogeneous survival rates. J. Wild. Man. 46:88–98.

    Article  Google Scholar 

  • Sullivan PJ (1992) A Kalman filter approach to catch-at-length analysis. Biometrics 48:237–258.

    Article  MATH  Google Scholar 

  • Tavecchia G, Besbeas P, Coulson T, Morgan BJT, Clutton-Brock TH (2007) Estimating population size and hidden demographic parameters with state-space modelling. Submitted for publication.

    Google Scholar 

  • Webster R, Heuvelink GBM, (2006) The Kalman filter for the pedologist’s tool kit. Eur. J. Soil Sci. 57:758–773.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Besbeas, P., Borysiewicz, R.S., Morgan, B.J. (2009). Completing the Ecological Jigsaw. In: Thomson, D.L., Cooch, E.G., Conroy, M.J. (eds) Modeling Demographic Processes In Marked Populations. Environmental and Ecological Statistics, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78151-8_22

Download citation

Publish with us

Policies and ethics