Skip to main content

Part of the book series: Environmental and Ecological Statistics ((ENES,volume 3))

Abstract

The history of density dependence started in 1798 with Malthus’ sentence: population, when unchecked, increases in a geometrical ratio. The famous controversy between Lack, Andrewartha and Birch and others in the 1950s and 1960s remained largely unsolved: while the impossibility of long term exponential growth required density-dependence, density-independent environmental variation in vital rates was often dominant in empirical studies. Fifty years later, where are we left? I revisit first the representation of density-dependence in dynamical models, whether deterministic or stochastic, and I emphasize the lack of theory for the simultaneous occurrence of density-dependence and environmental variation. I then review approaches to detect and measure the intensity of density-dependence, in two steps: based on population size estimates and in demographic parameter analyses. I discuss then how the question of density-dependence could be efficiently revisited, taking advantage of progress in our understanding of spatio-temporal dynamics, statistical procedures, access to individual characteristics, and possibilities of experimental approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen LJS (1989) A density-dependent Leslie matrix model. Mathematical Biosciences 95(2): 179–187.

    Article  MATH  MathSciNet  Google Scholar 

  • Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. Chicago, University of Chicago Press.

    Google Scholar 

  • Barker R, Fletcher D, Scofield P (2002) Measuring density dependence in survival from mark-recapture data. Journal of Applied Statistics 29:305–313.

    Google Scholar 

  • Berryman AA (2002) Population: a central concept for ecology?. Oikos 97(3):439–442.

    Article  MathSciNet  Google Scholar 

  • Berryman AA (2004) Limiting factors and population regulation. Oikos 105(3):667–670.

    Article  Google Scholar 

  • Berryman AA, Lima M, Hawkins BA (2003) Population regulation, emergent properties, and a requiem for density dependence. Oikos 100(3):636–636.

    Article  Google Scholar 

  • Besbeas P, Freeman SN, Morgan BJT, Catchpole EA (2002) Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58(3): 40–547.

    Article  MATH  MathSciNet  Google Scholar 

  • Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations. London, Her Majesty's Stationery Office.

    Google Scholar 

  • Box GE, Jenkins GM (1976) Time series analysis forecasting and control. Oakland, CA, Holden-Day.

    MATH  Google Scholar 

  • Boyce MS (1984) Restitution of r- and K-selection as a model of density-dependent natural selection. Annual Review of Ecology and Systematics 15:427–447.

    Google Scholar 

  • Brook BW, Bradshaw CJA (2006) Strength of evidence for density dependence in abundance time series of 1198 species. Ecology 87(6):1445–1451.

    Article  Google Scholar 

  • Bulmer MG (1975) The statistical analysis of density-dependence. Biometrics 31:901–911.

    Article  MATH  Google Scholar 

  • Burnham KP, Anderson DR (1984) Test of compensatory vs. additive hypotheses of mortality in Mallards. Ecology 63(1):105–112.

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models. Sunderland, MA, Sinauer.

    Google Scholar 

  • Clobert J, Lebreton J-D (1985) DĂ©pendance de facteurs de milieu dans les estimations de taux de survie par capture-recapture. Biometrics 41:1031–1037.

    Article  Google Scholar 

  • Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends in Ecology and Evolution 14(10):405–410.

    Article  Google Scholar 

  • Cox DR, Hinkley DV (1974) Theoretical statistics. London, Chapman and Hall.

    Book  MATH  Google Scholar 

  • Crespin L, Harris MP, Lebreton J-D, Wanless S (2006) Increased adult mortality and reduced breeding success with age in a population of common guillemot Uria aalge using marked birds of unknown age. Journal of Avian Biology 37(3):273–282.

    Article  Google Scholar 

  • Dennis B, Otten MRM (2000) Joint effects of density dependence and rainfall on abundance of San Joaquin kit fox. Journal of Wildlife Management 64(2):388–400.

    Article  Google Scholar 

  • Dennis B, Ponciano JM, Lele SR, Taper ML, Staples DF (2006) Estimating density dependence, process noise, and observation error. Ecological Monographs 76(3):323–341.

    Article  Google Scholar 

  • Dennis B, Taper ML (1994) Density-dependence in time-series observations of natural populations – Estimation and testing. Ecological Monographs 64(2):205–224.

    Article  Google Scholar 

  • De Valpine P, Hastings A (2002) Fitting population models incorporating process noise and observation error. Ecological Monographs 72(1):57–76.

    Article  Google Scholar 

  • Doris B (2005) ModĂ©lisation intĂ©grĂ©e en dynamique des populations. Application des mĂ©thodes de filtrage. Montpellier, CEFE & University Montpellier II:67p.

    Google Scholar 

  • Ennola K, Sarvala J, DĂ©vai G (1998) Modelling zooplancton population dynamics with the extended Kalman Filetring technique. Ecological Modelling 110:135–149.

    Article  Google Scholar 

  • Freckleton RP, Watkinson AR, Green RE, Sutherland WJ (2006) Census error and the detection of density dependence. Journal of Animal Ecology 75(4):837–851.

    Article  Google Scholar 

  • Frederiksen M, Bregnballe T (2000) Evidence for density-dependent survival in adult cormorants from a combined analysis of recoveries and resightings. Journal of Animal Ecology 69(5): 737–752.

    Article  Google Scholar 

  • Gauthier G, Besbeas P, Morgan BJT, Lebreton J-D (2007) Population growth in Snow Geese: a modeling approach integrating demographic and survey information. Ecology 88:1420–1429.

    Article  Google Scholar 

  • Gimenez O, Rossi V, Choquet R, Dehais C, Doris B, Varella H, Vila J-P, Pradel R (2007) State-space modelling of data on marked individuals. Ecological Modelling 206:431–438.

    Google Scholar 

  • Gimenez O, Bonner S, King R, Parker RA, Brooks SP, Jamieson LE, Grosbois V, Morgan BJT, Thomas L (2008) WinBUGS for population ecologists: Bayesian modeling using Markov Chain Monte Carlo methods. In: Thomson DL, Cooch EG, Conroy MJ (eds.) Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics, Springer, New York, Vol. 3, pp. 883–916.

    Google Scholar 

  • Gosselin F (2001) Asymptotic behavior of absorbing Markov chains conditional on non-absorption for applications to conservation biology. Annals of Applied Probability 11: 261–284.

    Article  MATH  MathSciNet  Google Scholar 

  • Gosselin F, Lebreton J-D (2000) The potential of branching processes as a modeling tool for conservation biology. Quantitative methods in conservation biology. S. Ferson and M. Burgman. New-York, Springer: 199–225.

    Chapter  Google Scholar 

  • Haddon M (2001) Modelling and quantitative methods in fisheries. Boca Raton, FL, Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Hamilton JD (1994) Time series analysis. Princeton, NJ, Princeton University Press.

    MATH  Google Scholar 

  • Harvey AC (1989) Forecasting, structural time series models and the Kalman filter. Cambridge, Cambridge University Press.

    Google Scholar 

  • Hassell MP (1975) Density-dependence in single-species populations. Journal of Animal Ecology 44(1):283–295.

    Article  Google Scholar 

  • Hastings A, Hom CL, Ellner S, Turchin P, Godfray JC (1993) Chaos in ecology: is mother nature a strange attractor?. Annual Review of Ecology and Systematics 24:1–33.

    Google Scholar 

  • Henaux V, Bregnballe T, Lebreton J-D (2007) Dispersal and recruitment during population growth in a colonial bird, the great cormorant Phalacrocorax carbo sinensis. Journal of Avian Biology 38(1):44–57.

    Article  Google Scholar 

  • Ito Y (1972) Methods for determining density-dependence by means of regression. Oecologia 10(4):347–372.

    Article  Google Scholar 

  • Ives AR, Dennis B, Cottingham KL, Carpenter SR (2003) Estimating community stability and ecological interactions from time-series data. Ecological Monographs 73(2):301–330.

    Article  Google Scholar 

  • Jamieson LE, Brooks SP (2002) State space models for density dependence in population ecology. Cambridge, UK, University of Cambridge.

    Google Scholar 

  • Jamieson LE, Brooks SP (2004) Density dependence in north american ducks. Animal Biodiversity and Conservation 27.1:113–128.

    Google Scholar 

  • Lack D (1954) The natural regulation of animal numbers. Oxford, Oxford University Press.

    Google Scholar 

  • Lande R, Engen S, Sæther B-E (2003) Stochastic population dynamics in ecology and conservation. Oxford, Oxford University Press.

    Book  Google Scholar 

  • Lebreton J-D (1989) Statistical methodology for the study of animal populations. Bulletin of the International Statistical Institute 53(1):267–282.

    Google Scholar 

  • Lebreton J-D (1990) Modelling density-dependence, environmental variability, and demographic stochasticity from population counts: an example about Wytham Great tits. Population biology of passerine birds an integrated approach. Blondel J, Gosler A, Lebreton J-D, McCleery R. Berlin, Springer 24: 89–102.

    Google Scholar 

  • Lebreton, J-D (2005) Dynamical and statistical models for exploited populations. Australian and New Zealand Journal of Statistics 47(1):49–63.

    Article  MATH  MathSciNet  Google Scholar 

  • Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62:67–118.

    Article  Google Scholar 

  • Maelzer DA (1970) Regression of Log Nn+1 on Log Nn as a test of density dependences – an exercise with computer-constructed density-independent populations. Ecology 51(5): 810–822.

    Article  Google Scholar 

  • Malthus TR (1798) An essay on the principle of population. Population, evolution, and birth control: a collage of controversial ideas (1964). G. Hardin. San Francisco, Freeman: 4–16.

    Google Scholar 

  • May RM (1976) Simple mathematical-models with very complicated dynamics. Nature 261(5560):459–467.

    Article  Google Scholar 

  • May RM, Conway GR, Hassell MP, Southwood TR (1974) Time delays, density-dependence and single-species oscillations. Journal of Animal Ecology 43(3):747–770.

    Article  Google Scholar 

  • McGhee JD, Berkson JM (2007) Estimation of a non-linear density-dependence paramter for wild turkey. Journal of Wildlife Management 71(3):706–712.

    Article  Google Scholar 

  • Murdoch WW (1994) Population regulation in theory and practice. Ecology 75(2):271–287.

    Article  MathSciNet  Google Scholar 

  • Newton I (1998) Population limitation in birds. London, Academic Press.

    Google Scholar 

  • Nicholson AJ, Bailey VA (1935) The balance of animal populaitons, part I. Proceedings of the Zoological Society of London 1:551–598.

    Article  Google Scholar 

  • North PM, Morgan BJT (1979) Modelling heron survival using weather data. Biometrics 35:67–681.

    Article  MathSciNet  Google Scholar 

  • Perrins CM (1970) Population studies of the Great Tit, Parus major. Proceedings of the Advanced study Institute on Dynamics Number 6 in Population, Oosterbeek.

    Google Scholar 

  • Ricker WE (1954) Stock and recruitment. Journal of the Fisheries Research Board of Canada 11:559–623.

    Article  Google Scholar 

  • Rodenhouse N, Sherry TW, Homes RT (1997) Site-dependent regulation of population size: a new synthesis. Ecology 78:2025–2042.

    Google Scholar 

  • Royama T (1992) Analytical population dynamics. London, Chapman & Hall.

    Book  Google Scholar 

  • Saint-Amant JLS (1970) Detection of regulation in animal populations. Ecology 51(5): 823–828.

    Article  Google Scholar 

  • Slade NA (1977) Statistical detection of density dependence from a series of sequential censuses. Ecology 58(5):1094–1102.

    Article  Google Scholar 

  • Stenseth NC, Viljugrein H, Saitoh T, Hansen TF, Kittilsen MO, Bølviken E, Glöckner F (2003) Seasonality, density dependence, and population cycles in Hokkaido voles. Proceedings of the National Academy of Sciences USA 100(20):11478–11483.

    Article  Google Scholar 

  • Texier R (1996) Contrepartie stochastique du modèle dĂ©terministe de Ricker en biologie des populaitons. Montpellier, CEFE, rapport de stage de magistère: 24.

    Google Scholar 

  • Thomson DL, Conroy MJ, Anderson DR, Burnham KP, Cooch EG, Francis CM, Lebreton J-D, Lindberg MS, Morgan BJT, Otis DL, White GC (2008) Standardising terminology and notation for the analysis of demographic processes in marked populations. In: Thomson DL, Cooch EG, Conroy MJ (eds.) Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics, Springer, New York, Vol. 3, pp. 1099–1106.

    Google Scholar 

  • Tuljapurkar S (1989) An uncertain life: demography in random environments. Theoretical Population Biology 35:227–294.

    Article  MATH  MathSciNet  Google Scholar 

  • Tuljapurkar S (1990) Population dynamics in variable environments. New York, Springer.

    Book  MATH  Google Scholar 

  • Verhulst PE (1838) Notice sur la loi que suit la population dans son accroissement. Corresp. Math. Phys. 10:113–121.

    Google Scholar 

  • Visser H, Molenaar J (1988) Kalman filter analysis in dendroclimatology. Biometrics 44(4): 29–940.

    Article  MATH  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. San Diego, Academic Press.

    Google Scholar 

  • Wynne-Edwards VC (1962) Animal dispersion in relation to social behaviour. Edinburgh, Oliver & Boyd.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Dominique Lebreton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lebreton, JD. (2009). Assessing Density-Dependence: Where Are We Left?. In: Thomson, D.L., Cooch, E.G., Conroy, M.J. (eds) Modeling Demographic Processes In Marked Populations. Environmental and Ecological Statistics, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78151-8_2

Download citation

Publish with us

Policies and ethics