Virulence Mechanisms of Acinetobacter

  • Grziela Braun
Part of the Infectious Agents and Pathogenesis book series (IAPA)


Definition of Pathogenicity

Pathogenicity is the ability of a microorganism to cause disease. Virulence is the pathogenicity degree of a microorganism that can vary between the members of a same species of pathogens. The virulence is not usually attributed to just one factor, but depends on various parameters related to the microorganism, the host, and the interaction between both (Winn Jr. et al., 2005). An infection begins when the balance between bacterial pathogenicity and host resistance is not stable (Peterson, 1996).

Pathogenicity of Acinetobacter

Until a few years ago, Acinetobacter was considered to be a relatively low-grade pathogen. However, the occurrence of fulminant community-acquired Acinetobacter pneumonia indicates that this bacterium may sometimes be of high pathogenicity and cause invasive disease (Joly-Guillou, 2005).

The genus Acinetobacterincludes aerobic Gram-negative coccobacilli that emerged as important opportunistic pathogens due to...


Quorum Sensing Acinetobacter Baumannii Human Bronchial Epithelial Cell Virulence Mechanism Acinetobacter Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Actis, L. A., Tolmasky, M. E., Crosa, L. M., and Crosa, J. H. 1993. Effect of iron-limiting conditions on growth of clinical isolates of Acinetobacter baumannii. J. Clin. Microbiol. 31:2812–2815.PubMedGoogle Scholar
  2. Beher, M. G., Schnaitman, C. A., and Pugsley, A. P. 1980. Major heat-modifiable outer membrane protein in gram-negative bacteria: comparison with the OmpA protein of Escherichia coli. J. Bacteriol. 143:906–913.PubMedGoogle Scholar
  3. Bergogne-Bérézin, E., and Towner, K. J. 1996. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9:148–165.PubMedGoogle Scholar
  4. Boujaafar, N., Freney, J., Bouvet, P. J. M., and Jeddi, M. 1990. Cell surface hydrophobicity of 88 clinical strains of Acinetobacter baumannii. Res. Microbiol. 141:477–482.PubMedCrossRefGoogle Scholar
  5. Brade, H., and Galanos, C. 1983a. A new lipopolysaccharide antigen identified in Acinetobacter calcoaceticus: occurrence of widespread natural antibody. J. Med. Microbiol. 16:203–210.CrossRefGoogle Scholar
  6. Brade, H., and Galanos, C. 1983b. Biological activities of the lipopolysaccharide and lipid A from Acinetobacter calcoaceticus. J. Med. Microbiol. 16:211–214.CrossRefGoogle Scholar
  7. Braun, G., and Vidotto, M. C. 2004. Evaluation of adherence, hemagglutination, and presence of genes codifying for virulence factors of Acinetobacter baumannii causing urinary tract infection. Mem. Inst. Oswaldo Cruz 99:839–844.PubMedCrossRefGoogle Scholar
  8. Choi, C. H., Lee, E. Y., Lee, Y. C., Park, T. I., Kim, H. J., Hyun, S. H., Kim, S. A., Lee, S-K., and Lee, J. C. 2005. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell. Microbiol. 7:1127–1138.PubMedCrossRefGoogle Scholar
  9. Daniel, C., Haentjens, S., Bissinger, M. C., and Courcol, R. J. 1999. Characterization of the Acinetobacter baumannii Fur regulator: cloning and sequencing of the fur homolog gene. FEMS Microbiol. Lett. 170:199–209.PubMedCrossRefGoogle Scholar
  10. Donnenberg, M. S., and Welch, R. A. 1996. Virulence determinants of uropathogenic Escherichia coli. In Urinary tract infections: molecular pathogenesis and clinical management, ed. Mobley, H. L. T., Warren, J. W., pp. 135–174. Washington: ASM Press.Google Scholar
  11. Dorsey, C. W., Tomaras, A. P., and Actis, L. A. 2002. Genetic and phenotypic analysis of Acinetobacter baumannii insertion derivatives generated with a transposome system. Appl. Environ. Microbiol. 68:6353–6360.PubMedCrossRefGoogle Scholar
  12. Dorsey, C. W., Tomaras, A. P., Connerly, P. L., Tolmasky, M. E., Crosa, J. H., and Actis, L. A. 2004. The siderophore-mediated iron acquisition systems of Acinetobacter baumannii ATCC 19606 and Vibrio anguillarum 775 are structurally and functionally related. Microbiology 150:3657–3667.PubMedCrossRefGoogle Scholar
  13. Echenique, J. R., Arienti, H., Tolmasky, M. E., Read, R. R., Staneloni, R. J., Crosa, J. H., and Actis, L. A. 1992. Characterization of a high-affinity iron transport system in Acinetobacter baumannii. J. Bacteriol. 174:7670–7679.PubMedGoogle Scholar
  14. Galanos, C., Lüderitz, O., and Westphal, O. 1971. Preparation and properties of antisera against the lipid-A component of bacterial lipopolysaccharides. Eur. J. Biochem. 24:116–122.PubMedCrossRefGoogle Scholar
  15. Galbraith, L., Sharples, J. L., and Wilkinson, S. G. 1999. Struture of the O-specific polysaccharide for Acinetobacter baumannii serogroup O1. Carbohydr. Res. 319:204–208.PubMedCrossRefGoogle Scholar
  16. Getchell-White, S. I., Donowitz, L. G., and Gröschel, D. H. M. 1989. The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. Infect. Control Hosp. Epidemiol. 10:402–407.PubMedCrossRefGoogle Scholar
  17. Goel, V. K., and Kapil, A. 2001. Monoclonal antibodies against the iron regulated outer membrane proteins of Acinetobacter baumannii are bactericidal. BMC Microbiol. 1:16–24.PubMedCrossRefGoogle Scholar
  18. Gohl, O., Friedrich, A., Hoppert, M., and Averhoff, B. 2006. The thin pili of Acinetobacter sp. Strain BD413 mediate adhesion to biotic and abiotic surfaces. Appl. Environ. Microbiol. 72:1394–1401.PubMedCrossRefGoogle Scholar
  19. Gonzalez, R. H., Nusblat, A., and Nudel, B. C. 2001. Detection and characterization of quorum sensing signal molecules in Acinetobacter strains. Microbiol. Res. 155:271–277.PubMedCrossRefGoogle Scholar
  20. Gospodarek, E., Grzanka, A., Dudziak, Z., and Domaniewski, J. 1998. Electron microscopic observation of adherence of Acinetobacter baumannii to red blood cells. Acta Microbiol. Pol. 47:213–217.PubMedGoogle Scholar
  21. Haseley, S. R., Diggle, H. J., and Wilkinson, S. G. 1996. Structure of a surface polysaccharide from Acinetobacter baumannii O16. Carbohydr. Res. 293:259–265.PubMedCrossRefGoogle Scholar
  22. Haseley, S. R., and Wilkinson, S. G. 1998. Structure of the O-7 antigen from Acinetobacter baumannii. Carbohydr. Res. 306:257–263.PubMedCrossRefGoogle Scholar
  23. Houang, E. T. S., Sormunen, R. T., Lai, L., Chan, C. Y., and Leong, A. S-Y. 1998. Effect of desiccation on the ultrastructural appearances of Acinetobacter baumannii and Acinetobacter lwoffii. J. Clin. Microbiol. 51:786–788.Google Scholar
  24. Jawad, A., Heritage, J., Snelling, M., Gascoyne-Binzi, D. M., and Hawkey, P. M. 1996. Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. J. Clin. Microbiol. 34:2881–2887.PubMedGoogle Scholar
  25. Jawad, A., Seifert, H., Snelling, A. M., Heritage, J., and Hawkey, P. M. 1998b. Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J. Clin. Microbiol. 36:1938–1941.Google Scholar
  26. Jawad, A., Snelling, A. M., Heritage, J., and Hawkey, P. M. 1998a. Exceptional desiccation tolerance of Acinetobacter radioresistens. J. Hosp. Infect. 39:235–240.CrossRefGoogle Scholar
  27. Johnson, J. R. 1991. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 4:80–128.PubMedGoogle Scholar
  28. Joly-Guillou, M. L. 2005. Clinical impact and pathogenicity of Acinetobacter. Clin. Microbiol. Infect. 11:868–873.PubMedCrossRefGoogle Scholar
  29. Kaplan, N., Rosenberg, E., Jann, B., and Jann, K. 1985. Structural studies of the capsular polysaccharide of Acinetobacter calcoaceticus BD4. Eur. J. Biochem. 152:453–458.PubMedCrossRefGoogle Scholar
  30. Krasnicki, K., and Gospodarek, E. 2004. Adhesion of Acinetobacter spp. to para-xylene. Med. Dosw. Mikrobiol. 56:179–185.PubMedGoogle Scholar
  31. Lee, J. C., Koerten, H., van den Broek, P., Beekhuizen, H., Wolterbeek, R., van den Barselaar, M., van der Reijden, T., van der Meer, J., van de Gevel, J., and Dijkshoorn, L. 2006. Adherence of Acinetobacter baumannii strains to human bronchial epithelial cells. Res. Microbiol. 157:360–366.PubMedCrossRefGoogle Scholar
  32. Lüderitz, O., Galanos, C., Risse, H. J., Ruschmann, E., Schlecht, S., Schmidt, G., Schulte-Holthausen, H., Wheat, R., Westphal, O., and Schlosshardt, J. 1966. Structural relationships of Salmonella O and R antigens. Ann. N. Y. Acad. Sci. 133:349–374.PubMedCrossRefGoogle Scholar
  33. Magnusson, K. E. 1982. Hydrophobic interaction: a mechanism of bacteria binding. Scand. J. Infect. Dis. 33:32–36.Google Scholar
  34. Mihara, K., Tanabe, T., Yamakawa, Y., Funahashi, T., Nakao, H., Narimatsu, S, and Yamamoto, S. 2004. Identification and transcriptional organization of a gene cluster involved in biosynthesis and transport of acinetobactin, a siderophore produced by Acinetobacter baumannii ATCC 19606T. Microbiology 150:2587–2597.PubMedCrossRefGoogle Scholar
  35. Musa, E. K., Desai, N., and Casewell, M. W. 1990. The survival of Acinetobacter calcoaceticus inoculated on fingertips and on formica. J. Hosp. Infect. 15:219–227.PubMedCrossRefGoogle Scholar
  36. Neilands, J. B. 1995. Siderophores: Structure and function of microbial iron transport compounds. J. Biol. Chem. 270:26723–26726.PubMedGoogle Scholar
  37. Obana, Y. 1986. Pathogenic significance of Acinetobacter calcoaceticus: analysis of experimental infection in mice. Microbial. Immunol. 30:645–657.Google Scholar
  38. Pantophlet, R., Seifert, H., Brade, L., and Brade, H. 2000. Antibody response to lipopolysaccharide in patients colonized or infected with an endemic strain of Acinetobacter genomic species 13 sensu Tjernberg and Ursing. Clin Diagn. Lab. Immunol. 7:293–295.PubMedGoogle Scholar
  39. Pantophlet, R., Severin, J. A., Nemec, A., Brade, L., Dijkshoorn, L., and Brade, H. 2002. Identification of Acinetobacter calcoaceticus-Acinetobacter baumannii complex with monoclonal antibodies specific for O antigens of their lipopolysaccharides. Clin Diagn. Lab. Immunol. 9:60–65.PubMedGoogle Scholar
  40. Peterson, J. W. 1996. Bacterial pathogenesis. In Medical Microbiology, ed. S. Baron. Galveston: University of Texas Medical Branch.Google Scholar
  41. Pines, O., and Gutnick, D. 1984. Alternate hydrophobic sites on the cell surface of Acinetobacter calcoaceticus RAG-1. FEMS Microbiol. Lett. 22:307–311.CrossRefGoogle Scholar
  42. Poh, C. L., and Loh, G. K. 1985. Enzymatic profile of clinical isolates of Acinetobacter calcoaceticus. Med. Microbiol. Immunol. 174:29–33.PubMedCrossRefGoogle Scholar
  43. Rathinavelu, S., Zavros, Y., and Merchant, J. L. 2003. Acinetobacter lwoffii infection and gastritis. Microbes Infect. 5:651–657.PubMedCrossRefGoogle Scholar
  44. Rosenberg, M. 1981. Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity. Appl. Environ. Microbiol. 42:375–377.PubMedGoogle Scholar
  45. Rosenberg, M., Bayer, E. A., Delarea, J., and Rosenberg, E. 1982. Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl. Environ. Microbiol. 44:929–937.PubMedGoogle Scholar
  46. Rosenberg, E., Kaplan, N., Pines, O., Rosenberg, M., and Gutnick, D. 1983. Capsular polysaccharides interfere with adherence of Acinetobacter calcoaceticus to hydrocarbon. FEMS Microbiol. Lett. 17:157–160.CrossRefGoogle Scholar
  47. Saint, N., Hamel, C. E., Dé, E., and Molle, G. 2000. Ion channel formation by N-terminal domain: a common feature of OprFs of Pseudomonas and OmpA of Escherichia coli. FEMS Microbiol. Lett. 190:261–265.PubMedCrossRefGoogle Scholar
  48. Sechi, L. A., Karadenizli, A., Deriu, A., Zanetti, S., Kolayli, F., Balikci, E., and Vahaboglu, H. 2004. PER-1 type beta-lactamase production in Acinetobacter baumannii is related to cell adhesion. Med. Sci. Monit. 10:180–184.Google Scholar
  49. Sepulveda, M., Ruiz, M., Bello, H., Dominguez, M., 1artínez, M. A., Pinto, M. E., Gonzalez, G., Mella, S., and Zemelman, R. 1998. Adherence of Acinetobacter baumannii to rat bladder tissue. Microbios 95:45–53.PubMedGoogle Scholar
  50. Smith, A. W., Freeman, S., Minett, W. G., and Lambert, P. A. 1990. Characterisation of a siderophore from Acinetobacter calcoaceticus. FEMS Microbiol. Lett. 70:29–32.CrossRefGoogle Scholar
  51. Swanson, T. N., Bilge, S. S., Nowicki, B., and Moseley, S. L. 1991. Molecular structure of the Dr adhesin: nucleotide sequence and mapping of the receptor-binding domain by use of fusion constructs. Infect. Immun. 59:261–268.PubMedGoogle Scholar
  52. Tomaras, A. P., Dorsey, C. W., Edelmann, R. E., and Actis, L.A. 2003. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149:3473–3484.PubMedCrossRefGoogle Scholar
  53. Vinogradov, E. V., Brade, L., Brade, H., and Holst, O. 2003. Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from Acinetobacter baumannii strain 24. Carbohydr. Res. 338:2751–2756.PubMedCrossRefGoogle Scholar
  54. Vinogradov, E. V., Duus, J. O., Brade, H., and Holst, O. 2002. The structure of the carbohydrate backbone of the lipopolysaccharide from Acinetobacter baumannii strain ATCC 19606. Eur. J. Biochem. 269:422–430.PubMedCrossRefGoogle Scholar
  55. Vordermeier, H. M., Hoffmann, P., Gombert, F. O., Jung, G., and Bessler, W. G. 1990. Synthetic peptide segments from Escherichia coli porin OmpF constitute leukocyte activators. Infect Immun. 58:2719–2724.PubMedGoogle Scholar
  56. Weiser, J. N., and Gotschlich, E. C. 1991. Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect. Immun. 59:2252–2258.PubMedGoogle Scholar
  57. Wendt, C., Dietze, B., Dietz, E., and Ruden, H. 1997. Survival of Acinetobacter baumannii on dry surfaces. J. Clin. Microbiol. 35:1394–1397.PubMedGoogle Scholar
  58. Winn Jr, W. C., Allen, S. D., Janda, W. M., Koneman, E. W., Schreckenberger, P. C., Procop, G. W., and Woods, G. L. 2005. Koneman's Color Atlas and Textbook of Diagnostic Microbiology. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  59. Wooldridge, K. G., and Williams, P. 1993. Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol. Rev. 12:325–348.PubMedCrossRefGoogle Scholar
  60. Yamamoto, S., Okujo, N., and Sakakibara, Y. 1994. Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Arch. Microbiol. 162:249–254.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Grziela Braun
    • 1
  1. 1.Universidade Estadual do Oeste do ParanáCentro de Ciências Médicas e FarmacêuticasCascavelBrasil

Personalised recommendations