Acinetobacter baumannii: Mechanisms of Resistance, Multiple ß-Lactamases

  • Laurent Poirel
  • Patrice Nordmann
Part of the Infectious Agents and Pathogenesis book series (IAPA)

Naturally encoded ß-Lactamases in Acinetobacter baumannii

Acinetobacter baumannii produces naturally an AmpC-type cephalosporinase, normally expressed at a basal level, which does not reduce the efficacy of expanded-spectrum cephalosporins (Bou and Martinez-Beltran, 2000). The AmpC variants identified from A. baumannii strains have been named ADC-type (Acinetobacter derived cephalosporinase) enzymes (Hujer et al., 2005). They hydrolyze amino-penicillins and first-, second- and third-generation cephalosporins; they do not confer resistance to ceftazidime when the corresponding gene is expressed at a basal level. However, insertion of a specific insertion sequence element ISAba1 (belonging to the IS4 family) upstream of the blaampC gene enhances the expression of this AmpC ß-lactamase by providing promoter sequences, resulting in resistance to ceftazidime but sparing carbapenems (Corvec et al., 2003; Segal et al., 2004; Héritier et al., 2006c). A. baumanniiproduces another naturally...


Acinetobacter Baumannii ESBL Producer Carbapenem Resistance ESBL Gene Baumannii Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Afzal-Shah M, Woodford N, Livermore D. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D ß-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 2001; 45: 583–8.PubMedCrossRefGoogle Scholar
  2. Al Naiemi N, Duin B, Savelkoul PHM et al. Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. J Clin Microbiol 2005; 43: 4862–4.CrossRefGoogle Scholar
  3. Ambler RP, Coulson AF, Frère JM et al. A standard numbering scheme for the class A ß-lactamases. Biochem J 1991; 276: 269–27.PubMedGoogle Scholar
  4. Bertini A, Giordano A, Varesi P, Villa L, Mancini C, Caratatoli A. First report of the plasmid-mediated carbapenem-hydrolyzing oxacillinase OXA-58 in Acinetobacter baumannii isolates in Italy. Antimicrob Agents Chemother 2006 50: 2268–9.PubMedCrossRefGoogle Scholar
  5. Bertini A, Poirel L, Bernabeu S et al. Multicopy bla OXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother 2007; 51: 2324–8.PubMedCrossRefGoogle Scholar
  6. Bou G, Martinez-Beltran J. Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC ß-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 2000; 44: 428–32.PubMedCrossRefGoogle Scholar
  7. Bou G, Oliver A, Martinez-Beltran A. OXA-24, a novel class D ß-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother 2000; 44: 1556–61.PubMedCrossRefGoogle Scholar
  8. Brown S, Amyes SG. The sequences of seven class D ß-lactamases isolated from carbapenem-resistant Acinetobacter baumannii from four continents. Clin Microbiol Infect 2005; 11: 326–9.PubMedCrossRefGoogle Scholar
  9. Brown S, Amyes SG. OXA ß-lactamases in Acinetobacter: the story so far. J Antimicrob Chemother 2006; 57: 1–3.PubMedCrossRefGoogle Scholar
  10. Brown S, Young HK, Amyes SG. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin Microbiol Infect 2005; 11: 15–23.PubMedCrossRefGoogle Scholar
  11. Bush K. New ß-lactamases in Gram negative bacteria; diversity and impact on the selection of antimicrobial chemotherapy. Clin Infect Dis 2001; 32: 1085–9.PubMedCrossRefGoogle Scholar
  12. Celenza G, Pellegrini C, Caccamo M, Segatore B, Amicosante G, Perilli M. Spread of bla CTX-M and bla PER-2 β-lactamase genes in clinical isolates from Bolivian hospitals. J Antimicrob Chemother 2006; 57: 975–8.PubMedCrossRefGoogle Scholar
  13. Chu YW, Afzal-Shah M, Houang ET et al. IMP-4, a novel metallo-ß-lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998. Antimicrob Agents Chemother 2001; 45: 710–4.PubMedCrossRefGoogle Scholar
  14. Coelho J, Woodford N, Afzal-Shah M, Livermore D. Occurrence of OXA-58-like carbapenemases in Acinetobacter spp. collected over 10 years in three continents. Antimicrob Agents Chemother 2006; 50: 756–8.PubMedCrossRefGoogle Scholar
  15. Cornaglia G, Riccio ML, Mazzariol A et al. Appearance of IMP-1 metallo-ß-lactamase in Europe. Lancet 1999; 353: 899–900.PubMedCrossRefGoogle Scholar
  16. Corvec S, Caroff N, Espaze E, Giraudeau C, Drugeon H, Reynaud A. AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J Antimicrob Chemother 2003; 52: 629–35.PubMedCrossRefGoogle Scholar
  17. Corvec S, Poirel L, Naas T, Drugeon H, Nordmann P. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-23 in Acinetobacter baumannii. Antimicrob Agents Chemother 2007; 51: 1530–3.PubMedCrossRefGoogle Scholar
  18. Costa SF, Woodcock J, Gill M et al. Outer-membrane proteins pattern and detection of ß-lactamases in clinical isolates of imipenem-resistant Acinetobacter baumannii from Brazil. Int J Antimicrob Agents 2000; 13: 175–82.PubMedCrossRefGoogle Scholar
  19. Couture F, Lachapelle J, Lévesque RC. Phylogeny of LCR-1 and OXA-5 with class A and class D ß-lactamases. Mol Microbiol 1992; 6: 1693–705.PubMedCrossRefGoogle Scholar
  20. Dalla-Costa LM, Coelho JM, Souza HA et al. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the OXA-23 enzyme in Curitiba, Brazil. J Clin Microbiol 2003; 41: 3403–6.PubMedCrossRefGoogle Scholar
  21. Da Silva GJ, Correia M, Vital C et al. Molecular characterization of bla IMP-5, a new integron-borne metallo-ß-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal. FEMS Microbiol Lett 2002; 215: 33–9.PubMedCrossRefGoogle Scholar
  22. Da Silva GJ, Quinteira S, Bertolo E et al. Long-term dissemination of an OXA-40 carbapenemase-producing Acinetobacter baumannii clone in the Iberian Peninsula. J Antimicrob Chemother 2004; 54: 255–8.PubMedCrossRefGoogle Scholar
  23. Devaud M, Kayser FH, Bachi B. Transposon-mediated multiple antibiotic resistance in Acinetobacter strains. Antimicrob Agents Chemother 1982; 22: 323–9.PubMedGoogle Scholar
  24. Donald HM, Scaife W, Amyes SG, Young HK. Sequence analysis of ARI-1, a novel OXA ß-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob Agents Chemother 2000; 44: 196–9.PubMedCrossRefGoogle Scholar
  25. Endimiani A, Luzzaro F, Migliavacca R et al. Spread in an italian hospital of a clonal Acinetobacter baumannii strain producing the TEM-92 extended-spectrum β-lactamase. Antimicrob Agents Chemother 2007; 51: 2211–4.PubMedCrossRefGoogle Scholar
  26. Fournier PE, Vallenet D, Barbe V et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2006; 2: 62–72.CrossRefGoogle Scholar
  27. Gales AC, Tognim MC, Reis AO et al. Emergence of an IMP-like metallo-enzyme in an Acinetobacter baumannii clinical strain from a Brazilian teaching hospital. Diagn Microbiol Infect Dis 2003; 45: 77–9.PubMedCrossRefGoogle Scholar
  28. Gehrlein M, Leying H, Cullmann W, Wendt S, Opferkuch W. Imipenem resistance in Acinetobacter baumannii is due to altered penicillin-binding proteins. Chemotherapy 1991; 37: 405–12.PubMedCrossRefGoogle Scholar
  29. Giordano A, Varesi P, Bertini A et al. Outbreak of Acinetobacter baumannii producing the carbapenem-hydrolyzing oxacillinase OXA-58 in Rome, Italy. Microb Drug Resist 2007; 13: 37–43.PubMedCrossRefGoogle Scholar
  30. Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2004; 48: 2043–8.PubMedCrossRefGoogle Scholar
  31. Goldstein FW, Labigne-Roussel, Gerbaud G et al. Transferable plasmid-mediated antibiotic resistance in Acinetobacter baumannii. Plasmid 1983; 10: 138–47.PubMedCrossRefGoogle Scholar
  32. Héritier C, Dubouix A, Poirel L, Marty N, Nordmann P. A nosocomial outbreak of Acinetobacter baumannii isolates expressing the carbapenem-hydrolyzing oxacillinase OXA-58. J Antimicrob Chemother 2005a; 55: 115–8.CrossRefGoogle Scholar
  33. Héritier C, Poirel L, Aubert D, Nordmann P. Genetic and functional analysis of the chromosome-encoded carbapenem-hydrolyzing oxacillinase OXA-40 of Acinetobacter baumannii. Antimicrob Agents Chemother 2003; 47: 268–73.PubMedCrossRefGoogle Scholar
  34. Héritier C, Poirel L, Fournier PE, Claverie JM, Raoult D, Nordmann P. Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob Agents Chemother 2005b; 49: 4174–9.CrossRefGoogle Scholar
  35. Héritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2005c; 49: 3198–202.CrossRefGoogle Scholar
  36. Héritier C, Poirel L, Nordmann P. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin Microbiol Infect 2006; 12: 123–30.PubMedCrossRefGoogle Scholar
  37. Hujer KM, Hamza NS, Hujer AM et al. Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 ß-lactamase: defining a unique family of class C enzymes. Antimicrob Agents Chemother 2005; 49: 2941–8.PubMedCrossRefGoogle Scholar
  38. Hujer KM, Hujer AM, Hulten EA et al. Analysis of antibiotic resistance genes in multidrug resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother 2006; 50: 4114–23.PubMedCrossRefGoogle Scholar
  39. Jeon BC, Jeong SH, Bae IK et al. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 ß-lactamase in Korea. J Clin Microbiol 2005; 43: 2241–5.PubMedCrossRefGoogle Scholar
  40. Kolayli F, Gacar G, Karadenizli A, Sanic A, Vahaboglu H. PER-1 is still widespread in Turkish hospitals among Pseudomonas aeruginosa and Acinetobacter spp. FEMS Microbiol Lett 2005; 15: 241–5.CrossRefGoogle Scholar
  41. Lee K, Lee WG, Uh Y et al. VIM- and IMP-type metallo-ß-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis 2003; 9: 868–71.PubMedGoogle Scholar
  42. Lee K, Yum JH, Yong D et al. Novel acquired metallo-ß-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 2005; 49: 4485–91.PubMedCrossRefGoogle Scholar
  43. Lim YM, Shin KS, Kim J. Distinct antimicrobial resistance patterns and antimicrobial resistance-harboring genes according to genomic species of Acinetobacter isolates. J Clin Microbiol 2007; 45: 902–5.PubMedCrossRefGoogle Scholar
  44. Lolans K, Rice TW, Munoz-Price LS, Quinn JP. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother 2006; 50: 2941–5.PubMedCrossRefGoogle Scholar
  45. Lopez-Otsoa F, Gallego L, Towner KJ, Tysall L, Woodford N, Livermore DM. Endemic carbapenem resistance associated with OXA-40 carbapenemase among Acinetobacter baumannii isolates from a hospital in northern Spain. J Clin Microbiol 2002; 40: 4741–3.PubMedCrossRefGoogle Scholar
  46. Marqué S, Poirel L, Héritier C et al. Regional occurrence of plasmid-mediated carbapenem-hydrolyzing oxacillinase OXA-58 in Acinetobacter spp. in Europe. J Clin Microbiol 2005; 43: 4885–8.PubMedCrossRefGoogle Scholar
  47. Mussi MA, Limansky AS, Viale AM. Acquisition of resistance to carbapenems in multi-drug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of ß-barrel outer membrane proteins. Antimicrob Agents Chemother 2005; 49: 1432–40.PubMedCrossRefGoogle Scholar
  48. Naas T, Bogaerts P, Bauraing C, Delgheldre Y, Glupczynski Y, Nordmann P. Emergence of PER and VEB extended-spectrum β-lactamases in Acinetobacter baumannii in Belgium. J Antimicrob Chemother 2006a; 58: 178–82.CrossRefGoogle Scholar
  49. Naas T, Coignard B, Carbonne A et al. VEB-1 extended-spectrum β-lactamase-producing Acinetobacter baumannii, France. Emerg Infect Dis 2006b; 12: 1214–22.CrossRefGoogle Scholar
  50. Naas T, Levy M, Hirschauer C, Marchandin H, Nordmann P. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-23 in a tertiary care hospital of Papeete, French Polynesia. J Clin Microbiol 2005; 43: 4826–9.PubMedCrossRefGoogle Scholar
  51. Naas T, Namdari F, Réglier-Poupet H, Poyart C, Nordmann P. Panresistant extended-spectrum β-lactamase SHV-5-producing Acinetobacter baumannii from New York City. J Antimicrob Chemother 2007a 60: 1174–1176.Google Scholar
  52. Naas T, Nordmann P. OXA-type ß-lactamases. Curr Pharm Des 1999; 5: 865–79.PubMedGoogle Scholar
  53. Naas T, Nordmann P, Heidt A. Inter-country transfer or PER-1 extended-spectrum β-lactamase-producing Acinetobacter baumannii from Romania. Internat J Antimicrob Agents 2007b; 29: 226–8.CrossRefGoogle Scholar
  54. Naas T, Poirel L, Nordmann P. Minor extended-spectrum ß-lactamases. Clin Microbiol Infect 2007c; 13 (Suppl. 5): 1–11.Google Scholar
  55. Nagano N, Nagano Y, Cordevant C, Shibata N, Arakawa Y. Nosocomial transmission of CTX-M-2 β-Lactamase-producing Acinetobacter baumannii in a neurosurgery ward. J Clin Microbiol 2004; 42: 3978–84.PubMedCrossRefGoogle Scholar
  56. Nordmann P, Naas T. Sequence analysis of PER-1 extended-spectrum ß-lactamase from Pseudomonas aeruginosa and comparison with class A ß-lactamases. Antimicrob Agents Chemother 1994; 38: 104–14.PubMedGoogle Scholar
  57. Paul G, Joly-Guillou ML, Bergogne- Bérézin E et al. Novel carbenicillin-hydrolyzing ß-lactamase (CARB-5) from Acinetobacter calcoaceticus var. anitratus. FEMS Microbiol Lett 1989; 50: 45–50.PubMedGoogle Scholar
  58. Peleg AY, Franklin C, Walters LJ, Bell JM, Spelman DW. OXA-58 and IMP-4 carbapenem-hydrolyzing ß-lactamases in an Acinetobacter junii blood culture from Australia. Antimicrob Agents Chemother 2006; 50: 399–400.PubMedCrossRefGoogle Scholar
  59. Pino C, Dominguez M, Gonzalez G et al. Extended-spectrum ß-lactamases (ESBL) production in Acinetobacter baumannii strains isolates from Chilean hospitals belonging to VIII region. Rev Chil Infectol 2007; 24: 137–41.Google Scholar
  60. Poirel L, Cabanne L, Vahaboglü H, Nordmann P. Genetic environment and expression of the extended-spectrum β-lactamase bla PER-1 gene in Gram-negative bacteria. Antimicrob Agents Chemother 2005a; 49: 1708–13.CrossRefGoogle Scholar
  61. Poirel L, Corvec S, Rapoport M et al. Identification of the novel narrow-spectrum ß-lactamase SCO-1 in Acinetobacter spp. from Argentina. Antimicrob Agents Chemother 2007; 51: 2179–84.PubMedCrossRefGoogle Scholar
  62. Poirel L, Karim A, Mercat A et al. Extended-spectrum β-lactamase-producing strain of Acinetobacter baumannii isolated from a patient in France. J Antimicrob Chemother 1999; 43: 157–65.PubMedCrossRefGoogle Scholar
  63. Poirel L, Lebessi E, Héritier C, Patsoura A, Foustoukou M, Nordmann P. Nosocomial spread of OXA-58-positive carbapenem-resistant Acinetobacter baumannii isolates in a pediatric hospital in Greece. Clin Microbiol Infect 2006; 12: 1138–41.PubMedCrossRefGoogle Scholar
  64. Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G, Nordmann P. OXA-58, a novel class D ß-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother 2005b; 49: 202–8.CrossRefGoogle Scholar
  65. Poirel L, Menuteau O, Agoli N, Cattoen C, Nordmann P. Outbreak of extended-sprectrum β-lactamase VEB-1 producing isolates of Acinetobacter baumannii in a French hospital. J Clin Microbiol 2003; 41: 3542–7.PubMedCrossRefGoogle Scholar
  66. Poirel L, Naas T, Guibert M, Chaibi EB, Labia R, Nordmann P. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum ß-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother 1999; 43: 573–81.PubMedGoogle Scholar
  67. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 2006a; 12: 826–36.CrossRefGoogle Scholar
  68. Poirel L, Nordmann P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-58 in Acinetobacter baumannii. Antimicrob Agents Chemother 2006b; 50: 1442–1448.CrossRefGoogle Scholar
  69. Pournaras S, Markogiannakis A, Ikonomidis A et al. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J Antimicrob Chemother 2006; 57; 557–61.PubMedCrossRefGoogle Scholar
  70. Quinteira S, Grosso F, Ramos H, Peixe L. Molecular epidemiology of imipenem-resistant Acinetobacter haemolyticus and Acinetobacter baumannii isolates carrying plasmid-mediated OXA-40 from a Portuguese hospital. Antimicrob Agents Chemother 2007; 51:3465–6.PubMedCrossRefGoogle Scholar
  71. Riccio ML, Franceschini N, Boschi L et al. Characterization of the metallo-ß-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla IMP allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother 2000; 44: 1229–35.PubMedCrossRefGoogle Scholar
  72. Scaife W, Young HK, Paton RH, Amyes SG. Transferable imipenem-resistance in Acinetobacter species from a clinical source. J Antimicrob Chemother 1995; 36: 585–6.PubMedCrossRefGoogle Scholar
  73. Segal H, Nelson EC, Elisha BG. Genetic environment of ampC in Acinetobacter baumannii clinical isolate. Antimicrob Agents Chemother 2004; 48: 612–4.PubMedCrossRefGoogle Scholar
  74. Shibata N, Doi Y, Yamane K et al. PCR typing of genetic determinants for metallo-ß-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol 2003; 41: 5407–13.PubMedCrossRefGoogle Scholar
  75. Sinha M, Srinivasa H, Macaden R. Antibiotic resistance profile and extended-spectrum ß-lactamase (ESBL) production in Acinetobacter species. Indian J Med Res 2007; 126: 63–7.PubMedGoogle Scholar
  76. Siroy A, Molle V, Lemaitre-Guillier C et al. Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. Antimicrob Agents Chemother 2005; 49: 4876–83.PubMedCrossRefGoogle Scholar
  77. Tsakris A, Ikonomidis A, Pournaras S et al. VIM-1 metallo-ß-lactamase in Acinetobacter baumannii. Emerg Infect Dis 2006; 12: 981–3.PubMedGoogle Scholar
  78. Turton JF, Kaufmann ME, Glover J et al. Detection and typing of integrons in epidemic strains of Acinetobacter baumannii found in the United Kingdom. J Clin Microbiol 2005; 43: 3074–82.PubMedCrossRefGoogle Scholar
  79. Turton JF, Ward ME, Woodford N et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 2006; 258: 72–7.PubMedCrossRefGoogle Scholar
  80. Vahaboglü H, Oztürk R, Avgün G et al. Widespread detection of PER-1-type extended-spectrum β-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multi-center study. Antimicrob Agents Chemother 1997; 41: 2265–9.PubMedGoogle Scholar
  81. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-ß-lactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18: 306–25.PubMedCrossRefGoogle Scholar
  82. Wang H, Guo P, Sun H et al. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob Agents Chemother 2007; 51: 4022–28.Google Scholar
  83. Yong D, Shin H, Kim S et al. High Prevalence of PER-1 extended-spectrum β-lactamase-producing Acinetobacter spp. in Korea. Antimicrob Agents Chemother 2003; 47: 1749–51.PubMedCrossRefGoogle Scholar
  84. Yum JH, Yi K, Lee H et al. Molecular characterization of metallo-ß-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the bla VIM-2 gene cassettes. J Antimicrob Chemother 2002; 49: 837–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Laurent Poirel
    • 1
  • Patrice Nordmann
    • 1
  1. 1.Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de ParisUniversité Paris XIFrance

Personalised recommendations