Efflux Pumps in Acinetobacter baumannii

  • Thamarai Schneiders
  • Jacqueline Findlay
  • Sebastian G.B. Amyes
Part of the Infectious Agents and Pathogenesis book series (IAPA)


Acinetobacter baumannii has become a formidable nosocomial pathogen that has gained prominence in the last decade. Its notoriety is largely attributed to the multidrug resistance phenotype that is exhibited by epidemic clones, which cause large outbreaks and which spread easily within intensive care units (Quale et al., 2003; Richet and Fournier, 2006). The initial identification of Acinetobacter species discovered a group of bacteria that were exquisitely sensitive to antibiotics (Bergogne-Bérézin and Towner, 1996). However, a combination of resistance elements coupled with the constitutive upregulation of intrinsic mechanisms have led to the development of a highly resistant subpopulation that survives antibiotic challenge.

Antibiotic resistance can be mediated through two ways, first, through drug-specific mutations and second, via changes that are not drug specific, e.g., upregulation of efflux pump expression. Antibiotic resistance in A. baumanniihas been documented...


Efflux Pump Outer Membrane Protein Acinetobacter Baumannii Major Facilitator Superfamily Multidrug Efflux Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baucheron, S., Mouline, C., Praud, K., Chaslus-Dancla, E. and Cloeckaert, A. 2005. TolC but not AcrB is essential for multidrug-resistant Salmonella enterica serotype Typhimurium colonization of chicks. J Antimicrob Chemother 55(5): 707–12.PubMedCrossRefGoogle Scholar
  2. Beier, D. and Gross, R. 2006. Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 9(2): 143–52.PubMedCrossRefGoogle Scholar
  3. Bergogne-Bérézin, E. and Towner, K. J. 1996. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9(2): 148–65.PubMedGoogle Scholar
  4. Bischoff, K. M., White, D. G., Hume, M. E., Poole, T. L. and Nisbet, D. J. 2005. The chloramphenicol resistance gene cmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine Escherichia coli. FEMS Microbiol Lett 243(1): 285–91.PubMedCrossRefGoogle Scholar
  5. Bissonnette, L., Champetier, S., Buisson, J. P. and Roy, P. H. 1991. Characterization of the nonenzymatic chloramphenicol resistance (cmlA) gene of the In4 integron of Tn1696: similarity of the product to transmembrane transport proteins. J Bacteriol 173(14): 4493–502.PubMedGoogle Scholar
  6. Bou, G., Cervero, G., Dominguez, M. A., Quereda, C. and Martinez-Beltran, J. 2000. Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in A. baumannii is not due solely to the presence of beta-lactamases. J Clin Microbiol 38(9): 3299–305.PubMedGoogle Scholar
  7. Burse, A., Weingart, H. and Ullrich, M. S. 2004. The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. Mol Plant Microbe Interact 17(1): 43–54.PubMedCrossRefGoogle Scholar
  8. Chau, S. L., Chu, Y. W. and Houang, E. T. 2004. Novel resistance-nodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3. Antimicrob Agents Chemother 48(10): 4054–55.PubMedCrossRefGoogle Scholar
  9. Chen, J., Morita, Y., Huda, M. N., Kuroda, T., Mizushima, T. and Tsuchiya, T. 2002. VmrA, a member of a novel class of Na(+)-coupled multidrug efflux pumps from Vibrio parahaemolyticus. J Bacteriol 184(2): 572–76.PubMedCrossRefGoogle Scholar
  10. Chu, Y. W., Chau, S. L. and Houang, E. T. 2006. Presence of active efflux systems AdeABC, AdeDE and AdeXYZ in different Acinetobacter genomic DNA groups. J Med Microbiol 55(Pt 4): 477–78.PubMedCrossRefGoogle Scholar
  11. Connell, S. R., Tracz, D. M., Nierhaus, K. H. and Taylor, D. E. 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47(12): 3675–81.PubMedCrossRefGoogle Scholar
  12. del Mar Tomas, M., Beceiro, A., Perez, A., Velasco, D., Moure, R., Villanueva, R., Martinez-Beltran, J. and Bou, G. 2005. Cloning and functional analysis of the gene encoding the 33- to 36-kilodalton outer membrane protein associated with carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 49(12): 5172–75.PubMedCrossRefGoogle Scholar
  13. Dupont, M., Pages, J. M., Lafitte, D., Siroy, A. and Bollet, C. 2005. Identification of an OprD homologue in Acinetobacter baumannii. J Proteome Res 4(6): 2386–90.PubMedCrossRefGoogle Scholar
  14. Fernandez-Cuenca, F., Martinez-Martinez, L., Conejo, M. C., Ayala, J. A., Perea, E. J. and Pascual, A. 2003. Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J Antimicrob Chemother 51(3): 565–74.PubMedCrossRefGoogle Scholar
  15. Fournier, P. E., Vallenet, D., Barbe, V., Audic, S., Ogata, H., Poirel, L., Richet, H., Robert, C., Mangenot, S., Abergel, C., Nordmann, P., Weissenbach, J., Raoult, D. and Claverie, J. M. 2006. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2(1): 62–72.PubMedCrossRefGoogle Scholar
  16. Fralick, J. A. 1996. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 178(19): 5803–05.PubMedGoogle Scholar
  17. Gribun, A., Nitzan, Y., Pechatnikov, I., Hershkovits, G. and Katcoff, D. J. 2003. Molecular and structural characterization of the HMP-AB gene encoding a pore-forming protein from a clinical isolate of Acinetobacter baumannii. Curr Microbiol 47(5): 434–43.PubMedCrossRefGoogle Scholar
  18. Grinius, L., Dreguniene, G., Goldberg, E. B., Liao, C. H. and Projan, S. J. 1992. A staphylococcal multidrug resistance gene product is a member of a new protein family. Plasmid 27(2): 119–29.PubMedCrossRefGoogle Scholar
  19. Grkovic, S., Brown, M. H. and Skurray, R. A. 2001. Transcriptional regulation of multidrug efflux pumps in bacteria. Semin Cell Dev Biol 12(3): 225–37.PubMedCrossRefGoogle Scholar
  20. Grkovic, S., Brown, M. H. and Skurray, R. A. 2002. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66(4): 671–701, table of contents.PubMedCrossRefGoogle Scholar
  21. Helmann, J. D. 2002. The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46: 47–110.PubMedCrossRefGoogle Scholar
  22. Higgins, P. G., Wisplinghoff, H., Stefanik, D. and Seifert, H. 2004. Selection of topoisomerase mutations and overexpression of adeB mRNA transcripts during an outbreak of Acinetobacter baumannii. J Antimicrob Chemother 54(4): 821–23.PubMedCrossRefGoogle Scholar
  23. Hiles, I. D., Gallagher, M. P., Jamieson, D. J. and Higgins, C. F. 1987. Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J Mol Biol 195(1): 125–42.PubMedCrossRefGoogle Scholar
  24. Hirakata, Y., Srikumar, R., Poole, K., Gotoh, N., Suematsu, T., Kohno, S., Kamihira, S., Hancock, R. E. and Speert, D. P. 2002. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 196(1): 109–18.PubMedCrossRefGoogle Scholar
  25. Hooper, D. C. 2005. Efflux pumps and nosocomial antibiotic resistance: a primer for hospital epidemiologists. Clin Infect Dis 40(12): 1811–17.PubMedCrossRefGoogle Scholar
  26. Houang, E. T., Chu, Y. W., Chu, K. Y., Ng, K. C., Leung, C. M. and Cheng, A. F. 2003. Significance of genomic DNA group delineation in comparative studies of antimicrobial susceptibility of Acinetobacter spp. Antimicrob Agents Chemother 47(4): 1472–75.PubMedCrossRefGoogle Scholar
  27. Huda, M. N., Morita, Y., Kuroda, T., Mizushima, T. and Tsuchiya, T. 2001. Na+-driven multidrug efflux pump VcmA from Vibrio cholerae non-O1, a non-halophilic bacterium. FEMS Microbiol Lett 203(2): 235–39.PubMedCrossRefGoogle Scholar
  28. Kucken, D., Feucht, H. and Kaulfers, P. 2000. Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. FEMS Microbiol Lett 183(1): 95–98.PubMedCrossRefGoogle Scholar
  29. Li, X. Z., Nikaido, H. and Poole, K. 1995. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39(9): 1948–53.PubMedGoogle Scholar
  30. Lin, J., Sahin, O., Michel, L. O. and Zhang, Q. 2003. Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 71(8): 4250–59.PubMedCrossRefGoogle Scholar
  31. Lomovskaya, O. and Lewis, K. 1992. Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci USA 89(19): 8938–42.PubMedCrossRefGoogle Scholar
  32. Lomovskaya, O., Zgurskaya, H. I., Totrov, M. and Watkins, W. J. 2007. Waltzing transporters and 'the dance macabre' between humans and bacteria. Nat Rev Drug Discov 6(1): 56–65.PubMedCrossRefGoogle Scholar
  33. Magnet, S., Courvalin, P. and Lambert, T. 2001. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 45(12): 3375–80.PubMedCrossRefGoogle Scholar
  34. Marchand, I., Damier-Piolle, L., Courvalin, P. and Lambert, T. 2004. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother 48(9): 3298–304.PubMedCrossRefGoogle Scholar
  35. Marti, S., Fernandez-Cuenca, F., Pascual, A., Ribera, A., Rodriguez-Bano, J., Bou, G., Miguel Cisneros, J., Pachon, J., Martinez-Martinez, L. and Vila, J. 2006. Prevalence of the tetA and tetB genes as mechanisms of resistance to tetracycline and minocycline in Acinetobacter baumannii clinical isolates. Enferm Infecc Microbiol Clin 24(2): 77–80.PubMedCrossRefGoogle Scholar
  36. Masuda, N., Sakagawa, E., Ohya, S., Gotoh, N., Tsujimoto, H. and Nishino, T. 2000a. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44(12): 3322–27.CrossRefGoogle Scholar
  37. Masuda, N., Sakagawa, E., Ohya, S., Gotoh, N., Tsujimoto, H. and Nishino, T. 2000b. Contribution of the MexX-MexY-oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44(9): 2242–46.CrossRefGoogle Scholar
  38. Morita, Y., Kataoka, A., Shiota, S., Mizushima, T. and Tsuchiya, T. 2000. NorM of Vibrio parahaemolyticus is an Na(+)-driven multidrug efflux pump. J Bacteriol 182(23): 6694–97.PubMedCrossRefGoogle Scholar
  39. Mussi, M. A., Limansky, A. S. and Viale, A. M. 2005. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins. Antimicrob Agents Chemother 49(4): 1432–40.PubMedCrossRefGoogle Scholar
  40. Navon-Venezia, S., Leavitt, A. and Carmeli, Y. 2007. High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother 59(4): 772–74.PubMedCrossRefGoogle Scholar
  41. Nemec, A., Maixnerova, M., van der Reijden, T. J., van den Broek, P. J. and Dijkshoorn, L. 2007. Relationship between the AdeABC efflux system gene content, netilmicin susceptibility and multidrug resistance in a genotypically diverse collection of Acinetobacter baumannii strains. J Antimicrob Chemother 60(3): 483–89.PubMedCrossRefGoogle Scholar
  42. Neyfakh, A. A., Bidnenko, V. E. and Chen, L. B. 1991. Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci USA 88(11): 4781–85.PubMedCrossRefGoogle Scholar
  43. Nikaido, H. 2001. Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 12(3): 215–23.PubMedCrossRefGoogle Scholar
  44. Pannek, S., Higgins, P. G., Steinke, P., Jonas, D., Akova, M., Bohnert, J. A., Seifert, H. and Kern, W. V. 2006. Multidrug efflux inhibition in Acinetobacter baumannii: comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-beta-naphthylamide. J Antimicrob Chemother 57(5): 970–74.PubMedCrossRefGoogle Scholar
  45. Paulsen, I. T., Brown, M. H., Dunstan, S. J. and Skurray, R. A. 1995. Molecular characterization of the staphylococcal multidrug resistance export protein QacC. J Bacteriol 177(10): 2827–33.PubMedGoogle Scholar
  46. Paulsen, I. T., Brown, M. H. and Skurray, R. A. 1996. Proton-dependent multidrug efflux systems. Microbiol Rev 60(4): 575–608.PubMedGoogle Scholar
  47. Piddock, L. J. 2006. Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4(8): 629–36.PubMedCrossRefGoogle Scholar
  48. Poelarends, G. J., Mazurkiewicz, P., Putman, M., Cool, R. H., Veen, H. W. and Konings, W. N. 2000. An ABC-type multidrug transporter of Lactococcus lactis possesses an exceptionally broad substrate specificity. Drug Resist Updat 3(6): 330–34.PubMedCrossRefGoogle Scholar
  49. Poole, K., Gotoh, N., Tsujimoto, H., Zhao, Q., Wada, A., Yamasaki, T., Neshat, S., Yamagishi, J., Li, X. Z. and Nishino, T. 1996. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21(4): 713–24.PubMedCrossRefGoogle Scholar
  50. Quale, J., Bratu, S., Landman, D. and Heddurshetti, R. 2003. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin Infect Dis 37(2): 214–20.PubMedCrossRefGoogle Scholar
  51. Richet, H. and Fournier, P. E. 2006. Nosocomial infections caused by Acinetobacter baumannii: a major threat worldwide. Infect Control Hosp Epidemiol 27(7): 645–46.PubMedCrossRefGoogle Scholar
  52. Roberts, M. C. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19(1): 1–24.PubMedCrossRefGoogle Scholar
  53. Rouch, D. A., Cram, D. S., DiBerardino, D., Littlejohn, T. G. and Skurray, R. A. 1990. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol Microbiol 4(12): 2051–62.PubMedCrossRefGoogle Scholar
  54. Russell, A. D. 1999. Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp Infect 43(Suppl): S57–68.PubMedCrossRefGoogle Scholar
  55. Russell, A. D. 2002. Mechanisms of antimicrobial action of antiseptics and disinfectants: an increasingly important area of investigation. J Antimicrob Chemother 49(4): 597–99.PubMedCrossRefGoogle Scholar
  56. Ruzin, A., Keeney, D. and Bradford, P. A. 2007. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Antimicrob Chemother 59(5): 1001–04.PubMedCrossRefGoogle Scholar
  57. Saier, M. H., Jr. and Paulsen, I. T. 2001. Phylogeny of multidrug transporters. Semin Cell Dev Biol 12(3): 205–13.PubMedCrossRefGoogle Scholar
  58. Siroy, A., Molle, V., Lemaitre-Guillier, C., Vallenet, D., Pestel-Caron, M., Cozzone, A. J., Jouenne, T. and De, E. 2005. Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. Antimicrob Agents Chemother 49(12): 4876–83.PubMedCrossRefGoogle Scholar
  59. Siroy, A., Cosette, P., Seyer, D., Lemaitre-Guillier, C., Vallenet, D., Van Dorsselaer, A., Boyer-Mariotte, S., Jouenne, T. and De, E. 2006. Global comparison of the membrane subproteomes between a multidrug-resistant Acinetobacter baumannii strain and a reference strain. J Proteome Res 5(12): 3385–98.PubMedCrossRefGoogle Scholar
  60. Smith, M. G., Gianoulis, T. A., Pukatzki, S., Mekalanos, J. J., Ornston, L. N., Gerstein, M. and Snyder, M. 2007. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 21(5): 601–14.PubMedCrossRefGoogle Scholar
  61. Squires, R. A. and Postier, R. G. 2006. Tigecycline for the treatment of infections due to resistant Gram-positive organisms. Expert Opin Investig Drugs 15(2): 155–62.PubMedCrossRefGoogle Scholar
  62. Su, X. Z., Chen, J., Mizushima, T., Kuroda, T. and Tsuchiya, T. 2005. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother 49(10): 4362–64.PubMedCrossRefGoogle Scholar
  63. Tabata, A., Nagamune, H., Maeda, T., Murakami, K., Miyake, Y. and Kourai, H. 2003. Correlation between resistance of Pseudomonas aeruginosa to quaternary ammonium compounds and expression of outer membrane protein OprR. Antimicrob Agents Chemother 47(7): 2093–99.PubMedCrossRefGoogle Scholar
  64. Tiengrim, S., Tribuddharat, C. and Thamlikitkul, V. 2006. In vitro activity of tigecycline against clinical isolates of multidrug-resistant Acinetobacter baumannii in Siriraj Hospital, Thailand. J Med Assoc Thai 89(Suppl 5): S102–05.PubMedGoogle Scholar
  65. Vila, J., Marti, S. and Sanchez-Cespedes, J. 2007. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother 59(6): 1210–15.PubMedCrossRefGoogle Scholar
  66. Xu, X. J., Su, X. Z., Morita, Y., Kuroda, T., Mizushima, T. and Tsuchiya, T. 2003. Molecular cloning and characterization of the HmrM multidrug efflux pump from Haemophilus influenzae Rd. Microbiol Immunol 47(12): 937–43.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thamarai Schneiders
    • 1
  • Jacqueline Findlay
    • 1
  • Sebastian G.B. Amyes
    • 1
  1. 1.Centre for Infectious DiseasesUniversity of EdinburghScotland EH16-4SB

Personalised recommendations