Genome Organization, Mutation, and Gene Expression in Acinetobacter

  • L. Nicholas Ornston
  • Donna Parke
Part of the Infectious Agents and Pathogenesis book series (IAPA)


Early investigations of Acinetobacter genetics focused upon Acinetobacter baylyi because the extraordinary competence of this species for natural transformation (Carr et al., 2003; Vaneechoutte et al., 2006) allowed convenient genetic analysis (Young et al., 2005). This background fostered determination of the annotated genomic sequence of A. baylyi (Barbe et al., 2004), which will serve as a useful reference for comparison with other genomic sequences as they become available. Immediately notable was the close similarity of Acinetobacter and Pseudomonas genes although the two genera have diverged markedly with respect to genome size, gene organization, and the G+C content of their DNA (Barbe et al., 2004). Comparisons of Acinetobacter and Pseudomonas genomes as well as those of divergent Pseudomonas genomes are informative because they may provide an indication of mechanisms that contributed to the divergence and determined the individuality of Acinetobacterspecies....


Mismatch Repair Horizontal Transfer Natural Transformation Tandem Duplication Pathogenicity Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Averhoff, B., L. Gregg-Jolly, D. Elsemore, and L. N. Ornston. 1992. Genetic analysis of supraoperonic clustering by use of natural transformation in Acinetobacter calcoaceticus. J. Bacteriol. 174:200–204.PubMedGoogle Scholar
  2. Barbe, V., D. Vallenet, N. Fonknechten, A. Kreimeyer, S. Oztas, L. Labarre, S. Cruveiller, C. Robert, S. Duprat, P. Wincker, L. N. Ornston, J. Weissenbach, P. Marliere, G. N. Cohen, and C. Medigue. 2004. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res. 32:5766–5779.PubMedCrossRefGoogle Scholar
  3. Bernards, M., A., and N. Lewis, G. 1998. The macromolecular aromatic domain in suberized tissue: A changing paradigm. Phytochem. 47:915–933.Google Scholar
  4. Bernards, M. A., and F. A. Razem. 2001. The poly(phenolic) domain of potato suberin: a non-lignin cell wall bio-polymer. Phytochem. 57:1115–1122.CrossRefGoogle Scholar
  5. Buchan, A., E. L. Neidle, and M. A. Moran. 2004. Diverse organization of genes of the ß-ketoadipate pathway in members of the marine Roseobacter lineage. Appl. Environ. Microbiol. 70:1658–1668.PubMedCrossRefGoogle Scholar
  6. Buchan, A., and L. N. Ornston. 2005. When coupled to natural transformation, PCR-mutagenesis in Acinetobacter sp. strain ADP1 is made less random by mismatch repair. Appl. Environ. Microbiol. 71:7610–7612.PubMedCrossRefGoogle Scholar
  7. Carr, E. L., P. Kampfer, B. K. C. Patel, V. Gurtler, and R. J. Seviour. 2003. Seven novel species of Acinetobacter isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 53:953–963.PubMedCrossRefGoogle Scholar
  8. Clark, T. J., C. Momany, and E. L. Neidle. 2003. The benPK operon, proposed to play a role in transport, is part of a regulon for benzoate catabolism in Acinetobacter sp. strain ADP1. Microbiology 148:1213–1223.Google Scholar
  9. Clark, T. J., R. S. Phillips, B. M. Bundy, C. Momany, and E. L. Neidle. 2004. Benzoate decreases the binding of cis,cis-muconate to the BenM regulator despite the synergistic effect of both compounds on transcriptional activation. J. Bacteriol. 186:1200–1204.PubMedCrossRefGoogle Scholar
  10. D'Argenio, D. A., A. Segura, W. M. Coco, P. V. Bunz, and L. N. Ornston. 1999a. The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by the overlapping specificity of VanK. J. Bacteriol. 181:3505–3515.Google Scholar
  11. D'Argenio, D. A., M. W. Vetting, D. H. Ohlendorf, and L. N. Ornston. 1999b. Substitution, insertion, deletion, suppression, and altered substrate specificity in functional protocatechuate 3,4-dioxygenases. J. Bacteriol. 181:6478–6487.Google Scholar
  12. Dal, S., I. Steiner, and U. Gerischer. 2002. Multiple operons connected with catabolism of aromatic compounds in Acinetobacter sp. strain ADP1 are under carbon catabolite repression. J. Mol. Microbiol. Biotechnol. 4:389–404.PubMedGoogle Scholar
  13. Dal, S., G. Trautwein, and U. Gerischer. 2005. Transcriptional organization of genes for protocatechuate and quinate degradation from Acinetobacter sp. Strain ADP1. Appl. Environ. Microbiol. 71:1025–1034.PubMedCrossRefGoogle Scholar
  14. DiMarco, A. A., and L. N. Ornston. 1994. Regulation of p-hydroxybenzoate hydroxylase synthesis by PobR bound to an operator in Acinetobacter calcoaceticus. J. Bacteriol. 176:4277–4284.PubMedGoogle Scholar
  15. Eisen, J. A. 1998. A phylogenomic study of the MutS family of proteins. Nucleic Acids Res. 26:4291–4300.PubMedCrossRefGoogle Scholar
  16. Elsemore, D. A., and L. N. Ornston. 1994. The pca-pob supraoperonic cluster of Acinetobacter calcoaceticus contains quiA, the structural gene for quinate-shikimate dehydrogenase. J. Bacteriol. 176:7659–7666.PubMedGoogle Scholar
  17. Ezezika, O. C., L. S. Collier-Hyams, H. A. Dale, A. C. Burk, and E. L. Neidle. 2006. CatM Regulation of the benABCDE Operon: Functional Divergence of Two LysR-Type Paralogs in Acinetobacter baylyi ADP1. Appl. Environ. Microbiol. 72:1749–1758.PubMedCrossRefGoogle Scholar
  18. Ezezika, O. C., S. Haddad, T. J. Clark, E. L. Neidle, and C. Momany. 2007. Distinct Effector-binding Sites Enable Synergistic Transcriptional Activation by BenM, a LysR-type Regulator. J. Mol. Biol. 367:616–629.PubMedCrossRefGoogle Scholar
  19. Field, D., M. O. Magnasco, E. R. Moxon, D. Metzgar, M. M. Tanaka, C. Wills, and D. S. Thaler. 1999. Contingency loci, mutator alleles, and their interactions. Synergistic strategies for microbial evolution and adaptation in pathogenesis. Ann. N. Y. Acad. Sci. 870:378–382.PubMedCrossRefGoogle Scholar
  20. Fournier, P.E., D. Vallenet, V. Barbe, S. Audic, H. Ogata, L. Poirel, H. Richet, C. Robert, S. Mangenot, C. Abergel, P. Nordmann, J. Weissenbach, D. Raoult, and J.-M. Claverie. 2006. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS. Genetics 2(1):e7.PubMedCrossRefGoogle Scholar
  21. Gaines, G. L., 3rd, L. Smith, and E. L. Neidle. 1996. Novel nuclear magnetic resonance spectroscopy methods demonstrate preferential carbon source utilization by Acinetobacter calcoaceticus. J. Bacteriol. 178:6833–6841.PubMedGoogle Scholar
  22. Gerischer, U. 2002. Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria. J. Mol. Biol. Biotechnol. 4:111–121.Google Scholar
  23. Gerischer, U., D. A. D'Argenio, and L. N. Ornston. 1996. IS1236, a newly discovered member of the IS3 family, exhibits varied patterns of insertion into the Acinetobacter calcoaceticus chromosome. Microbiol. 142:1825–1831.CrossRefGoogle Scholar
  24. Gerischer, U., and L. N. Ornston. 1995. Spontaneous mutations in pcaH and -G, structural genes for protocatechuate 3,4-dioxygenase in Acinetobacter calcoaceticus. J. Bacteriol. 177:1336–1347.PubMedGoogle Scholar
  25. Gerischer, U., A. Segura, and L. N. Ornston. 1998. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter. J. Bacteriol. 180:1512–1524.PubMedGoogle Scholar
  26. Gore, J. M., F. A. Ran, and L. N. Ornston. 2006. Deletion Mutations Caused by DNA Strand Slippage in Acinetobacter baylyi. Appl. Environ. Microbiol. 72:5239–5245.PubMedCrossRefGoogle Scholar
  27. Graca, J., and H. Pereira. 2000. Suberin structure in potato periderm: glycerol, long-chain monomers, and glyceryl and feruloyl dimers. J. Agric. Food Chem. 48:5476–5483.PubMedCrossRefGoogle Scholar
  28. Gregg-Jolly, L. A., and L. N. Ornston. 1994. Properties of Acinetobacter calcoaceticus recA and its contribution to intracellular gene conversion. Mol. Microbiol. 12:985–992.PubMedCrossRefGoogle Scholar
  29. Hartnett, G. B., B. Averhoff, and L. N. Ornston. 1990. Selection of Acinetobacter calcoaceticus mutants deficient in the p-hydroxybenzoate hydroxylase gene (pobA), a member of a supraoperonic cluster. J. Bacteriol. 172:6160–6161.PubMedGoogle Scholar
  30. Hartnett, G. B., and L. N. Ornston. 1994. Acquisition of apparent DNA slippage structures during extensive evolutionary divergence of pcaD and catD genes encoding identical catalytic activities in Acinetobacter calcoaceticus. Gene 142:23–29.PubMedCrossRefGoogle Scholar
  31. Kok, R. G., D. A. D'Argenio, and L. N. Ornston. 1997. Combining localized PCR mutagenesis and natural transformation in direct genetic analysis of a transcriptional regulator gene, pobR. J. Bacteriol. 179:4270–4276.PubMedGoogle Scholar
  32. Kok, R. G., D. A. D'Argenio, and L. N. Ornston. 1998. Mutation analysis of PobR and PcaU, closely related transcriptional activators in Acinetobacter. J. Bacteriol. 180:5058–5069.PubMedGoogle Scholar
  33. Kowalchuk, G. A., L. A. Gregg-Jolly, and L. N. Ornston. 1995. Nucleotide sequences transferred by gene conversion in the bacterium Acinetobacter calcoaceticus. Gene 153:111–115.PubMedCrossRefGoogle Scholar
  34. Kowalchuk, G. A., G. B. Hartnett, A. Benson, J. E. Houghton, K. L. Ngai, and L. N. Ornston. 1994. Contrasting patterns of evolutionary divergence within the Acinetobacter calcoaceticus pca operon. Gene 146:23–30.PubMedCrossRefGoogle Scholar
  35. Lovett, S. T. 2004. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol. Microbiol. 52:1243–1253.PubMedCrossRefGoogle Scholar
  36. Martin, P., T. van de Ven, N. Mouchel, A. C. Jeffries, D. W. Hood, and E. R. Moxon. 2003. Experimentally revised repertoire of putative contingency loci in Neisseria meningitidis strain MC58: evidence for a novel mechanism of phase variation. Mol. Microbiol. 50:245–257.PubMedCrossRefGoogle Scholar
  37. Metzgar, D., J. M. Bacher, V. Pezo, J. Reader, V. Doring, P. Schimmel, P. Marliere, and V. de Crecy-Lagard. 2004. Acinetobacter sp ADP1: an ideal model organism for genetic analysis and genome engineering. Nucleic Acids Res. 32:5780–5790.PubMedCrossRefGoogle Scholar
  38. Morawski, B., A. Segura, and L. N. Ornston. 2000a. Repression of Acinetobacter vanillate demethylase synthesis by VanR, a member of the GntR family of transcriptional regulators. FEMS Microbiol. Lett. 187:65–68.CrossRefGoogle Scholar
  39. Morawski, B., A. Segura, and L. N. Ornston. 2000b. Substrate range and genetic analysis of Acinetobacter vanillate demethylase. J. Bacteriol. 182:1383–1389.CrossRefGoogle Scholar
  40. Moxon, E. R., P. B. Rainey, M. A. Nowak, and R. E. Lenski. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4:24–33.PubMedCrossRefGoogle Scholar
  41. Neidle, E. L., C. Hartnett, S. Bonitz, and L. N. Ornston. 1988. DNA sequence of the Acinetobacter calcoaceticus catechol 1,2-dioxygenase I structural gene catA: evidence for evolutionary divergence of intradiol dioxygenases by acquisition of DNA sequence repetitions. J. Bacteriol. 170:4874–4880.PubMedGoogle Scholar
  42. Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. Martins dos Santos, D. E. Fouts, S. R. Gill, M. Pop, M. Holmes, L. Brinkac, M. Beanan, R. T. DeBoy, S. Daugherty, J. Kolonay, R. Madupu, W. Nelson, O. White, J. Peterson, H. Khouri, I. Hance, P. Chris Lee, E. Holtzapple, D. Scanlan, K. Tran, A. Moazzez, T. Utterback, M. Rizzo, K. Lee, D. Kosack, D. Moestl, H. Wedler, J. Lauber, D. Stjepandic, J. Hoheisel, M. Straetz, S. Heim, C. Kiewitz, J. A. Eisen, K. N. Timmis, A. Dusterhoft, B. Tummler, and C. M. Fraser. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4:799–808.PubMedCrossRefGoogle Scholar
  43. Parke, D., D. A. D'Argenio, and L. N. Ornston. 2000. Bacteria are not what they eat: that is why they are so diverse. J. Bacteriol. 182:257–63.PubMedCrossRefGoogle Scholar
  44. Parke, D., M. A. Garcia, and L. N. Ornston. 2001. Cloning and genetic characterization of dca genes required for ß-oxidation of straight-chain dicarboxylic acids in Acinetobacter sp. strain ADP1. Appl. Environ. Microbiol. 67:4817–4827.CrossRefGoogle Scholar
  45. Parke, D., and L. N. Ornston. 2003. Hydroxycinnamate (hca) genes from Acinetobacter sp. strain ADP1 are repressed by HcaR and induced by hydroxycinnamoyl-CoA thioesters. Appl. Environ. Microbiol. 69:5398–5409.PubMedCrossRefGoogle Scholar
  46. Parke, D., and L. N. Ornston. 2004. Toxicity caused by hydroxycinnamoyl-Coenzyme A thioester accumulation in mutants of Acinetobacter sp. strain ADP1. Appl. Environ. Microbiol. 70:2974–2983.PubMedCrossRefGoogle Scholar
  47. Rayssiguier, C., D. S. Thaler, and M. Radman. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342:396–401.PubMedCrossRefGoogle Scholar
  48. Reams, A. B., and E. L. Neidle. 2003. Genome plasticity in Acinetobacter: new degradative capabilities acquired by the spontaneous amplification of large chromosomal segments. Mol. Microbiol. 47:1291–1304.PubMedCrossRefGoogle Scholar
  49. Reams, A. B., and E. L. Neidle. 2004a. Gene amplification involves site-specific short homology-independent illegitimate recombination in Acinetobacter sp. strain ADP1. J. Mol. Biol. 338:643–656.CrossRefGoogle Scholar
  50. Reams, A. B., and E. L. Neidle. 2004b. Selection for gene clustering by tandem duplication. Annu. Rev. Microbiol. 58:119–142.Google Scholar
  51. Saunders, N. J., J. F. Peden, D. W. Hood, and E. R. Moxon. 1998. Simple sequence repeats in the Helicobacter pylori genome. Mol. Microbiol. 27:1091–1098.PubMedCrossRefGoogle Scholar
  52. Segura, A., P. V. Bunz, D. A. D'Argenio, and L. N. Ornston. 1999. Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter. J. Bacteriol. 181:3494–3504.PubMedGoogle Scholar
  53. Shanley, M. S., A. Harrison, R. E. Parales, G. Kowalchuk, D. J. Mitchell, and L. N. Ornston. 1994. Unusual G+C content and codon usage in catIJF, a segment of the ben-cat supra-operonic cluster in the Acinetobacter calcoaceticus chromosome. Gene 138:59–65.PubMedCrossRefGoogle Scholar
  54. Smith, M. A., V. B. Weaver, D. M. Young, and L. N. Ornston. 2003. Genes for chlorogenate and hydroxycinnamate catabolism (hca) are linked to functionally related genes in the dca-pca-qui-pob-hca chromosomal cluster of Acinetobacter sp. strain ADP1. Appl. Environ. Microbiol. 69:524–532.PubMedCrossRefGoogle Scholar
  55. Smith, M. G., T. A. Gianoulis, S. Pukatzki, J. J. Mekalanos, L. N. Ornston, M. Gerstein, and M. Snyder. 2007. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21:601–614.PubMedCrossRefGoogle Scholar
  56. Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964.PubMedCrossRefGoogle Scholar
  57. Trautwein, G., and U. Gerischer. 2001. Effects exerted by transcriptional regulator PcaU from Acinetobacter sp. strain ADP1. J. Bacteriol. 183:873–881.PubMedCrossRefGoogle Scholar
  58. Vaneechoutte, M., D. M. Young, L. N. Ornston, T. D. Baere, A. Nemec, T. v. d. Reijden, E. Carr, I. Tjernberg, and L. Dijkshoorn. 2006. The naturally transformable Acinetobacter strain ADP1 belongs to the newly described species Acinetobacter baylyi. Appl. Environ. Microbiol. 72:932–936.CrossRefGoogle Scholar
  59. Yeh, W. K., and L. N. Ornston. 1981. Evolutionarily homologous α2 β2 oligomeric structures in β-ketoadipate succinyl-CoA transferases from Acinetobacter calcoaceticus and Pseudomonas putida. J. Biol. Chem. 256:1565–1569.PubMedGoogle Scholar
  60. Young, D. M., D. A. D'Argenio, M. Jen, D. Parke, and L. Nicholas Ornston. 2003. Gunsalus and Stanier set the stage for selection of cold-sensitive mutants apparently impaired in movement of FAD within 4-hydroxybenzoate hydroxylase. Biochem. Biophys. Res. Comm. 312:153–160.CrossRefGoogle Scholar
  61. Young, D. M., and L. N. Ornston. 2001. Functions of the mismatch repair gene mutS from Acinetobacter sp. strain ADP1. J. Bacteriol. 183:6822–6831.PubMedCrossRefGoogle Scholar
  62. Young, D. M., D. Parke, and L. N. Ornston. 2005. Opportunities for genetic investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species that is highly competent for natural transformation. Annu. Rev. Microbiol. 59:519–551.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • L. Nicholas Ornston
    • 1
  • Donna Parke
    • 1
  1. 1.Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUSA

Personalised recommendations