Advertisement

Antimicrobial Resistance and Therapeutic Alternatives

  • Jordi Vila
  • Jerónimo Pachón
Chapter
Part of the Infectious Agents and Pathogenesis book series (IAPA)

Introduction

The taxonomy of the genus Acinetobacter has undergone several changes throughout history. Currently, 32 different genospecies are accepted in the Acinetobacter genus; among these, Acinetobacter baumannii is the most frequently isolated species with the greatest clinical interest (Bergogne-Bérézin and Towner, 1996). The incidence of nosocomial infections caused by this species, mainly in intensive care units, has been steadily rising in recent years. However, other species of the genus such as Acinetobacter lwoffii,Acinetobacter genospecies 3, and Acinetobacter genospecies 13 are also involved in nosocomial infections. Since strains resistant to all antimicrobial agents have been described (Biendo et al., 1999), A. baumannii can be considered the paradigm of multiresistant bacteria. Several factors can favor the acquisition of multiresistance: (1) The ability to survive in environmental and human reservoirs, Acinetobacterspp. have been found in different hospital...

Keywords

Clinical Isolate Efflux Pump Outer Membrane Protein Acinetobacter Baumannii Efflux System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bergogne-Bérézin, E. and Towner, K. J. 1996. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9:148–165.PubMedGoogle Scholar
  2. Bernabeu-Wittel, M., Pichardo, C., García-Curiel, A., Pachón-Ibáñez, M. E., Ibáñez-Martínez, J., Jiménez-Mejías, M. E. and Pachón, J. 2005. Pharmacokinetc/pharmacodynamic assessment of the in-vivo efficacy of imipenem alone or in combination with amikacin for the treatment of experimental multiresistant Acinetobacter baumannii pneumonia. Clin. Microbiol. Infect. 11:319–325.CrossRefGoogle Scholar
  3. Betriu, C., Rodriguez-Avial, I., Gómez, M., Culebras, E., López, F., Alvarez, J., Picazo, J.J. and the Spanish Tigecycline Group. 2006. Antimicrobial activity of tigecycline against clinical isolates of Spanish medical centers: second multicenter study. Diagn. Microbiol. Infect. Dis. 56:437–444.PubMedCrossRefGoogle Scholar
  4. Biendo, M., Laurans, G., Lefebvre, J. F., Daoudi, F. and Eb, F. 1999. Epidemiological study of an Acinetobacter baumannii outbreak by using a combination of antibiotyping and ribotyping. J. Clin. Microbiol. 37:2170–2175.PubMedGoogle Scholar
  5. Blot, S., Vandewoude, K. and Colardyn, F. 2003. Nosocomial bacteremia involving Acinetobacter baumannii in critically ill patients: a matched cohort study. Int. Care Med. 29:471–475.Google Scholar
  6. Braunstein, A., Papo, N. and Shai, Y. 2004. In vitro activity and potency of an intravenously injected antimicrobial peptide and its DL amino acid analog in mice infected with bacteria. Antimicrob. Agent Chemother. 48:3127–3129.CrossRefGoogle Scholar
  7. Buisson, Y., Tran Van Nhieu, G. and Ginot, L. 1990. Nosocomial outbreaks due to amikacin-resistant tobramycin-sensitive Acinetobacter species: correlation with amikacin usage. J. Hosp. Infect. 15:83–93.PubMedCrossRefGoogle Scholar
  8. Chen, S. F., Chang, W. N., Lu, C. H., Chuang, Y. C., Tsai, H. H., Tsai, N. W., Chang, H. W., Lee, P. Y., Chien, C. C. and Huang, C. R. 2005. Adult Acinetobacter meningitis and its comparison with non-Acinetobacter gram-negative bacterial meningitis. Acta Neurol. Taiwan 14:131–137.PubMedGoogle Scholar
  9. Cisneros, J. M., Reyes, M. J., Pachon, J., Becerril, B., Caballero, F. J., Garcia-Garmendia, J. L., Ortiz, C. and Cobacho, A. R. 1996. Bacteremia due to Acinetobacter baumannii: epidemiology, clinical findings, and prognostic features. Clin. Infect. Dis. 22:1026–1032.PubMedCrossRefGoogle Scholar
  10. Corbella, X., Pujol, M., Ayats, J., Sendra, M., Ardanuy, C., Dominguez, M. A., Linares, J., Ariza, J. and Gudiol, F. 1996. Relevance of digestive tract colonization in the epidemiology of nosocomial infections due to multiresistant Acinetobacter baumannii. Clin. Infect. Dis. 23:329–334.PubMedCrossRefGoogle Scholar
  11. Corbella, X., Ariza, J., Ardanuy, C., Vuelta, M., Tubau, F., Sora, M., Pujol, M., Gudiol, F. 1998. Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. J. Antimicrob. Chemother. 42:793–802.PubMedCrossRefGoogle Scholar
  12. Da Silva, G. J., Correia, M., Vital, C., Ribeiro, G., Sousa, J. C., Leitao, R., Peixe, L. and Duarte, A. 2002. Molecular characterization of bla(IMP-5), a new integron-borne metallo-beta-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal. FEMS Microbiol. Lett. 215:33–39.PubMedCrossRefGoogle Scholar
  13. Devaud, M., Kayser, F. H. and Bachi, B. 1982. Transposon-mediated multiple antibiotic resistance in Acinetobacter strains. Antimicrob. Agents Chemother. 22:323–329.PubMedGoogle Scholar
  14. De Vegas, E. Z., Nieves, B., Araque, M., Velasco, E., Ruiz, J. and Vila, J. 2006. Outbreak of infection with Acinetobacter strain RUH 1139 in an intensive care unit. Infect. Control Hosp. Epidemiol. 27:397–403.PubMedCrossRefGoogle Scholar
  15. Elisha, B. G. and Stein, L.M. 1991. The use of molecular techniques for the location and characterization of antibiotic resistance genes in clinical isolates of Acinetobacter. In The Biology of Acinetobacter, eds. K.J. Towner, E. Bergogne-Bérézin and C.A. Fewson. New York: Plenum Publishing Corp.Google Scholar
  16. Falagas, M.E., Bliziotis, I.A., Kasiakou, S.K., Samonis, G., Athanassopoulou, P. and Michalopoulos, A. 2005. Outcome of infections due to pandrug-resistant (PDR) Gram-negative bacteria. BMC Infect. Dis. 5:24–30.PubMedCrossRefGoogle Scholar
  17. Falagas, M. E., Kopterides, P. and Siempos, I. I. 2006. Attributable mortality of Acinetobacter baumannii infection among critically ill patients. Clin. Infect. Dis. 43: (Suppl.) S1–S39.PubMedCrossRefGoogle Scholar
  18. Fagon, J. Y., Chastre, J., Hance, A. J., Montravers, P., Novara, A. and Gibert, C. 1993. Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay. Am. J. Med. 94:281–288.PubMedCrossRefGoogle Scholar
  19. Fagon, J. Y., Chastre, J., Domart, Y., Trouillet, J. L. and Gibert, C. 1996. Mortality due to ventilator-associated pneumonia or colonization with Pseudomonas or Acinetobacter species: assessment by quantitative culture of samples obtained by a protected specimen brush. Clin. Infect. Dis. 23:538–542.PubMedCrossRefGoogle Scholar
  20. Fernández-Cuenca, F., Pascual, A., Ribera, A., Vila, J., Bou, G., Cisneros, J. M., Rodríguez-Baño, J., Pachón, J., Martínez-Martínez, L. and Grupo de Estudio de Infección Hospitalaria (GEIH). 2004. Diversidad clonal y sensibilidad a los antimicrobianos de Acinetobacter baumannii aislados en hospitales españoles. Estudio multicéntrico nacional: proyecto GEIH-Ab 2000. Enferm. Infecc. Microbiol. Clín. 22:267–271.PubMedCrossRefGoogle Scholar
  21. Fournier, P. E. and Richet, H. 2006. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin. Infect. Dis. 42:692–699.PubMedCrossRefGoogle Scholar
  22. Fournier, P. E., Vellenet, D., Barbe, V., Audic, S., Ogata, H., Poirel, L., Richet, H., Robert, C., Mangenot, S., Abergel, C., Nordmann, P., Weissenbach, J., Raoult, D. and Claverie, J. M. 2006. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2:62–72.CrossRefGoogle Scholar
  23. Garnacho, J., Sole-Violan, J., Sa-Borges, M., Diaz, E. and Rello, J. 2003. Clinical impact of pneumonia caused by Acinetobacter baumannii in intubated patients: a matched cohort study. Crit. Care Med. 31:2478–2482.PubMedCrossRefGoogle Scholar
  24. Garnacho-Montero, J., Ortiz-Leyva, C., Jiménez-Jiménez, F. J., Barrero-Almodóvar, A. E., García-Garmendia, J. L., Bernabeu-Wittel, M., Gallego-Lara, S. L. and Madrazo-Osuna, J. 2003. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin. Infect. Dis. 36:1111–1118.PubMedCrossRefGoogle Scholar
  25. Garnacho-Montero, J., Ortiz-Leyba, C., Fernández-Hinojosa, E., Aldabó-Pallás, T., Cayuela, A., Márquez-Vácaro, J. A., García-Curiel, A. and Jiménez-Jiménez, F. J. 2005. Acinetobacter baumannii ventilator-associated pneumonia: epidemiological and clinical findings. Int. Care Med. 31:649–655.CrossRefGoogle Scholar
  26. Getchell-White, S. I., Donowitz, L. G. and Groschel, D. H. 1989. The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. Infect. Control Hosp. Epidemiol. 10:402–407.PubMedCrossRefGoogle Scholar
  27. Gkrania-Klotsas, E. and Hershow, R. C. 2006. Colonization or infection with multidrug resistant Acinetobacter baumannii may be an independent risk factor for increased mortality. Clin. Infect. Dis. 43:1224–1225.PubMedCrossRefGoogle Scholar
  28. Gleeson, T., Petersen, K. and Mascola, J. 2005. Successful treatment of Acinetobacter meningitis with meropenm and rifampicin. J. Antimicrob. Chemother. 56:602–603.PubMedCrossRefGoogle Scholar
  29. Goldstein, F. W., Labigne-Roussel, A., Gerbaud, G., Carlier, C., Collatz, E. and Courvalin, P. 1983. Transferable plasmid-mediated antibiotic resistance in Acinetobacter. Plasmid 10:138–147.PubMedCrossRefGoogle Scholar
  30. Gombac, F., Riccio, M. L., Rossolini, G. M., Lagatolla, C., Tonin, E., Monti-Bragadin, C., Lavenia, A. and Dolzani, L. 2002. Molecular characterization of integrons in epidemiologically unrelated clinical isolates of Acinetobacter baumannii from Italian Hospitals Reveals a Limited Diversity of Gene Cassette Arrays. Antimicrob. Agents Chemother. 46:3665–3668.PubMedCrossRefGoogle Scholar
  31. Grehn, M. and von Graevenitz, A. 1978. Search for Acinetobacter calcoaceticus subsp. anitratus: enrichment of fecal samples. J. Clin. Microbiol. 8:342–343.PubMedGoogle Scholar
  32. Grupper, M., Sprecher, H., Mashiach, T. and Finkelstein, R. 2007. Attributable mortality of nosocomial Acinetobacter bacteremia. Infect. Control Hosp. Epidemiol. 28:293–298.PubMedCrossRefGoogle Scholar
  33. Higgins, P. G., Wisplinghoff, H., Stefanik, D. and Seifert, H. 2004. Selection of topoisomerase mutations and overexpression of adeB mRNA transcripts during an outbreak of Acinetobacter baumannii. J. Antimicrob. Chemother. 54:821–823.PubMedCrossRefGoogle Scholar
  34. Huovinen, P., Sundstrom, L., Swedberg, G. and Skold, O. 1995. Trimethoprim and sulfonamide resistance. Antimicrob. Agents Chemother. 39:279–289.PubMedGoogle Scholar
  35. Hsueh, P. R., Teng, L. J., Chen, C. Y., Chen, W. H., Yu, C. J., Ho, S. W. and Luh, K. T. 2002. Pandrug-resistant Acinetobacter baumannii causing nosocomial infections in a university hospital, Taiwan. Emerg. Infect. Dis. 8:827–832.PubMedGoogle Scholar
  36. Jiménez-Mejías, M. E., Pachón, J., Becerril, B., Palomino-Nicas, J., Rodriguez-Cobacho, A. and Revuelta, M. 1997. Treatment of multidrug-resistant Acinetobacter baumannii meningitis with ampicillin/sulbactam. Clin. Infect. Dis. 24:932–935.PubMedCrossRefGoogle Scholar
  37. Jiménez-Mejías, M. E., Pichardo-Guerrero, C., Márquez-Rivas, F. J., Martín-Lozano, D., Prados, T. and Pachón, J. 2002. Cerebrospinal fluid penetration and pharmacokinetic/pharmacodynamic parameters of intravenously administered colistin in a case of multidrug-resistant Acinetobacter baumannii meningitis. Eur. J. Clin. Microbiol. Infect. Dis. 21:212–214.PubMedCrossRefGoogle Scholar
  38. Kuo, L. C., Lai, C. C., Liao, C. H., Hsu, C. K., Chang, Y. L., Chang, C. Y. and Hsueh, P. R. 2007. Multidrug-resistant Acinetobacter baumannii bacteraemia: clinical features, antimicrobial therapy and prognosis. Clin. Microbiol. Infect. 13:196–198.PubMedCrossRefGoogle Scholar
  39. Kwon, K. T., Oh, W. S., Song, J. H., Chang, H. H., Jung, S. I., Kim, S. W., Ryu, S. Y., Heo, S. T., Jung, D. S., Rhee, J. Y., Shin, S. Y., Ko, K. S., Peck, K.R. and Lee, N. Y. 2007. Impact of imipenem resistance on mortality in patients with Acinetobacter bacteraemia. J. Antimicrob. Cemother. 59:525–530.CrossRefGoogle Scholar
  40. Lee, K., Yum, J. H., Yong, D., Lee, H. M., Kim, H. D., Docquier, J. D., Rossolini, G. M. and Chong, Y. 2005. Novel acquired Metallo-ß-Lactamase gene, bla SIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother. 49: 4485–4491.PubMedCrossRefGoogle Scholar
  41. Levin, A. S., Levy, C. E., Manrique, A. E., Medeiros, E. A. and Costa, S. F. 2003. Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam. Int. J. Antimicrob. Agents 21:58–62.PubMedCrossRefGoogle Scholar
  42. Linden, P. K. and Paterson, D. L. 2006. Parenteral and inhaled colistin for treatment of ventilator-associated pneumonia. Clin. Infect. Dis. 43:S89–S94.PubMedCrossRefGoogle Scholar
  43. Magnet, S., Courvalin, P. and Lambert, T. 2001. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother. 45:3375–3380.PubMedCrossRefGoogle Scholar
  44. Marchand, I., Damier-Piolle, L., Courvalin, P. and Lambert, T. 2004. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob. Agents Chemother. 48:3298–3304.PubMedCrossRefGoogle Scholar
  45. Martí, S., Fernández-Cuenca, F., Pascual, A., Ribera, A., Rodríguez-Baño, J., Bou, G., Cisneros, J. M., Pachón, J., Martínez-Martínez, L., Vila, J. and Grupo de Estudio de Infección Hospitalaria. 2006. Prevalencia de los genes tetA y tetB como mecanismo de resistencia a tetraciclina y minociclina en aislamientos clínicos de Acinetobacter baumannii. Enferm. Infecc. Microbiol. Clin. 24:77–80.PubMedCrossRefGoogle Scholar
  46. McDonald, L. C. 2006. Trends in antimicrobial resistance in health care-associated pathogens and effect on treatment. Clin. Infect. Dis. 42:S65–S71.PubMedCrossRefGoogle Scholar
  47. Montero, A., Ariza, J., Corbella, X., Doménech, A., Cabellos, C., Ayats, J., Tubau, F., Borraz, C. and Gudiol, F. 2004. Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. J. Antimicrob. Chemother. 54:1085–1091.PubMedCrossRefGoogle Scholar
  48. Montero, A., Ariza, J., Corbella, X., Doménech, A., Cabellos, C., Ayats, J., Tubau, F., Ardanuy, C. and Gudiol, F. 2002. Efficacy of colistin versus β-lactams, aminoglycosides, and rifampin as monotherapy in a mouse model of pneumonia caused by multiresistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 46:1946–1952.CrossRefGoogle Scholar
  49. Motaouakkil, S., Charra, B., Hachimi, A., Nejmi, H., Benslama, A., Elmdaghri, N., Belabbes, H. and Benbachir, M. 2006. Colistin and rifampicin in the treatment of nosocomial infections from multiresistant Acinetobacter baumannii. J. Infect. 53:274–278.PubMedCrossRefGoogle Scholar
  50. Musa, E. K., Desai, N. and Casewell, M. W. 1990. The survival of Acinetobacter calcoaceticus inoculated on fingertips and on formica. J. Hosp. Infect. 15:219–227.PubMedCrossRefGoogle Scholar
  51. Nagano, N., Nagano, Y., Cordevant, C., Shibata, N. and Arakawa, Y. 2004. Nosocomial transmisión of CTX-M-2 β-lactamase producing Acinetobacter baumannii in a neurosurgery ward. J. Clin. Microbiol. 42:3978–3984.PubMedCrossRefGoogle Scholar
  52. Navia, M., Ruiz, J. and Vila, J. 2002. Characterization o fan integron carrying a new class D β-lactamase (OXA-37) in Acinetobacter baumannii. Microb. Drug Resist. 8:261–265.PubMedCrossRefGoogle Scholar
  53. Nemec, A., Dolzani, L., Brisse, S., van den Broek, P. and Dijkshoorn, L. 2004. Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European Acinetobacter baumannii clones. J. Med. Microbiol. 53:1233–1240.PubMedCrossRefGoogle Scholar
  54. Ng, J., Gosbell, I. B., Kelly, J. A., Boyle, M. J. and Ferguson, J. K. 2006. Cure of multiresistant Acinetobacter baumannii central nervous infections with intraventricular or intrathecal colistin: case series and literature review. J. Antimicrob. Chemother. 58:1078–1081.PubMedCrossRefGoogle Scholar
  55. Obana, Y., Nishino, T. and Tanino, T. 1985. In vitro and in vivo activities of antimicrobial agents against Acinetobacter calcoaceticus. J. Antimicrob. Chemother. 15:441–448.PubMedCrossRefGoogle Scholar
  56. Owen, R. J., Li, J., Nation, R. L. and Spelman, D. 2007. In vitro pharmacodynamics of colistin against Acinetobacter baumannii clinical isolates. J. Antimicrob. Chemother. 59:473–477.PubMedCrossRefGoogle Scholar
  57. Pachón-Ibáñez, M. E., Jiménez-Mejías, M. E., Pichardo, C., Llanos, A. C. and Pachón, J. 2004. Antimicrobial activity of tigecycline (GAR-936) again multiresistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 48:4479–4481.PubMedCrossRefGoogle Scholar
  58. Pachón-Ibáñez, M. E., Docobo-Pérez, F., Jiménez-Mejías, M. E., Pichardo, C., García-Curiel, A. and Pachón, J. 2005. Efficacy of rifampin, imipenem, and sulbactam in monotherapy and combination, in the experimental pneumonia caused by panresistant Acinetobacter baumannii. Clin. Microbiol. Infect. 11(Suppl. 2):868–873.Google Scholar
  59. Pachón-Ibáñez, M. E., Fernández-Cuenca, F., Docobo-Pérez, F., Pachón, J. and Pascual, A. 2006. Prevention of rifampicin resistance in Acinetobacter baumannii in an experimental pneumonia model, using rifampicin associated to imipenem or sulbactam. J. Antimicrob. Chemother. 58:689–692.PubMedCrossRefGoogle Scholar
  60. Pantopoulou, A., Giamarellos-Bourboulis E. J., Raftogannis, M., Tsaganos, T., Dontas, I., Koutoukas, P., Baziaka, F., Giamarellou, H. and Perrea, D. 2007. Colistin offers prolonged survival in experimental infection by multiresistant Acinetobacter baumannii: the significance of co-administration of rifampicina. Int. J. Antimicrob. Agents 29:51–55.PubMedCrossRefGoogle Scholar
  61. Peleg, A. Y., Potoski, B. A., Rea, R., Adams, J., Sethi, J., Capitano, B., Husain, S., Kwak, E. J., Bhat, S. V. and Paterson, D. L. 2007. Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J. Antimicrob. Chemother. 59:128–131.PubMedCrossRefGoogle Scholar
  62. Petrosillo, N., Chinello, P., Proietti, M. F., Cecchini, L., Masala, M., Franchi, C., Venditti, M., Sposito, S. and Nicastri, E. 2005. Combined colistin and rifampicin therapy for carbapenem-resistant Acinetobacter baumannii infections: clinical outcome and adverse events. Clin. Microbiol. Infect. 11:682–683.PubMedCrossRefGoogle Scholar
  63. Plachouras, D., Giamarellos-Bourboulis, E. J., Kentepozidis, N., Baziaka, F., Karagianni, V. and Giamarellou, H. 2006. In vitro postantibiotic effect of colistin on multidrug-resistant Acinetobacter baumannii. Diagn. Microbiol. Infect. Dis. Dec 21; [Epub ahead of print].Google Scholar
  64. Poirel, L., Karim, A., Mercat, A., Le Thomas, I., Vahaboglu, H., Richard, C. and Nordmann, P. 1999. Extended-spectrum β-lactamase-producing strain of Acinetobacter baumannii isolated from a patient in France. J. Antimicrob. Chemother. 43:157–165.Google Scholar
  65. Poirel, L., Menuteau, O., Agoli, N., Cattoen, C. and Nordmann, P. 2003. Outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J. Clin. Microbiol. 41:3542–3547.PubMedCrossRefGoogle Scholar
  66. Poirel, L. and Nordmann, P. 2006. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin. Microbiol. Infect. 12:826–836.PubMedCrossRefGoogle Scholar
  67. Rahal, J. J. 2006. Novel antibiotics combinations against infections with almost completely resistant Pseudomonas aeruginosa and Acinetobacter species. Clin. Infect. Dis. 43:S95–S99.PubMedCrossRefGoogle Scholar
  68. Ribera, A., Ruiz, J., Jiménez de Anta, M. T. and Vila, J. 2002. Effect o fan efflux pump inhibitor on the MIC of nalidixic acid for Acinetobacter baumannii and Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 49:697–702.PubMedCrossRefGoogle Scholar
  69. Ribera, A., Roca, I., Ruiz, J., Gibert, I. and Vila, J. 2003. Partial characterization of a transposon containing the tet(A) determinant in a clinical isolate of Acinetobacter baumannii. J. Antimicrob. Chemother. 52:477–480.PubMedCrossRefGoogle Scholar
  70. Ribera, A., Vila, J., Fernández-Cuenca, F., Martínez-Martínez, L., Pascual, A., Beceiro, A., Bou, G., Cisneros, J. M., Pachón, J. and Rodríguez-Baño, J. 2004. Type 1 Integrons in Epidemiologically Unrelated Acinetobacter baumannii Isolates Collected at Spanish Hospitals. Antimicrob. Agents Chemother. 48: 364–365.PubMedCrossRefGoogle Scholar
  71. Roberts, M. C. 2005. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett. 245:195–203.PubMedCrossRefGoogle Scholar
  72. Rodríguez-Baño, J., Cisneros, J. M., Fernandez-Cuenca, F., Ribera, A., Vila, J., Pascual, A., Martinez-Martinez, L., Bou, G., Pachon, J. and the Spanish Group for Nosocomial Infection (GEIH). 2004. Clinical features and epidemiology of Acinetobacter baumannii colonization and infection in Spanish hospitals. Infect. Control Hosp. Epidemiol. 25:819–824.PubMedCrossRefGoogle Scholar
  73. Rodríguez-Hernández, M. J., Pachón, J., Pichardo, C., Cuberos, L., Ibáñez-Martínez, J., García-Curiel, A., Caballero, F. J., Moreno, I. and Jiménez-Mejías, M. E. 2000. Imipenem, doxycycline and amikacin in monotherapy and in combination in Acinetobacter baumannii experimental pneumonia. J. Antimicrob. Chemother. 45:493–501.PubMedCrossRefGoogle Scholar
  74. Rodríguez-Hernández, M. J., Jiménez-Mejias, M. E., Pichardo, C., Cuberos, L., García-Curiel, A. and Pachón, J. 2004. Colistin efficacy in an experimental endocarditis model caused by Acinetobacter baumannii. Clin. Microbiol. Infect. 10:581–584.PubMedCrossRefGoogle Scholar
  75. Rodríguez-Hernández, M. J., Saugar, J., Docobo-Perez, F., de la Torre, B. G., Pachón-Ibáñez, M. E., Garcia-Curiel, A., Fernández-Cuenca, F., Andreu, D., Rivas, L. and Pachón, J. 2006. Studies on the antimicrobial activity of cecropin A-melittin hybrid peptides in colistin-resistant clinical isolates of Acinetobacter baumannii. J. Antimicrob. Chemother. 58:95–100.PubMedCrossRefGoogle Scholar
  76. Rosenthal, S. and Tager, I. B. 1975. Prevalence of gram-negative rods in the normal pharyngeal flora. Ann. Intern. Med. 83:355–357.PubMedGoogle Scholar
  77. Ruiz, J., Navia, M. M., Casals, C., Sierra, J. M., Jiménez De Anta, M. T. and Vila, J. 2003. Integron-mediated antibiotic multiresistance in Acinetobacter baumannii clinical isolates from Spain. Clin. Microbiol. Infect. 9:907–911.CrossRefGoogle Scholar
  78. Ruzin, A., Keeney, D. and Bradfort, P. A. 2007. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J. Antimicrob. Chemother. 60:1018–1029.Google Scholar
  79. Saballs, M., Pujol, M., Tubau, F., Peña, C., Montero, A., Dominguez, M. A., Gudiol, F. and Ariza, J. 2006. Rifampicin/imipenem combination in the treatment of carbapenem-resistant Acinetobacter baumannii infections. J. Antimicrob. Chemother. 58:697–700.PubMedCrossRefGoogle Scholar
  80. Sato, K. and Nakae, T. 1991. Outer membrane permeability of Acinetobacter calcoaceticus and its implication in antibiotic resistance. J. Antimicrob. Chemother. 28:35–45.PubMedCrossRefGoogle Scholar
  81. Shaw, K. J., Rather, P. N., Hare, R. S. and Miller, G. H. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationship of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138–163.PubMedGoogle Scholar
  82. Seifert, H., Baginski, R., Schulze, A. and Pulverer, G. 1993. Antimicrobial susceptibility of Acinetobacter species. Antimicrob. Agents Chemother. 37:750–753.PubMedGoogle Scholar
  83. Seifert, H., Stefanik, D. and Wisplinghoff, H. 2006. Comparative in vitro activities of tigecycline and 11 other antimicrobial agents against 215 epidemiologically defined multidrug-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 58:1099–1100PubMedCrossRefGoogle Scholar
  84. Somerville, D. A. and Noble, W. C. 1970. A note on the gram-negative bacilli of human skin. Eur. J. Clin. Biol. Res. 40:669–670.Google Scholar
  85. Su, X. Z., Chen, J., Mizushima, T., Kuroda, T. and Tsuchira, T. 2005. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob. Agents Chemother. 49:4362–4364.PubMedCrossRefGoogle Scholar
  86. Sunenshine, H. R., Wright, M. O., Maragakis, L. L., Harris, A. D., Song, X., Hebden, J., Cosgrove, S. E., Anderson, A., Carnell, J., Jernigan, D. B., Kleinbaum, D. G., Perl, T. M., Standiford, H. C. and Srinivasan, A. 2007. Multidrug resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg. Infect. Dis. 13:97–103.PubMedCrossRefGoogle Scholar
  87. Traub, W. H. and Spohr, M. 1989. Antimicrobial drug susceptibility of clinical isolates of Acinetobacter species (A. baumannii, A. haemolyticus, genospecies 3 and genospecies 6). Antimicrob. Agents Chemother. 33:1617–1619.PubMedGoogle Scholar
  88. Turton, J. F., Kaufmann, M. E., Glover, J., Coelho, J. M., Warner, M., Pike, R. and Pitt, T. L. 2005. Detection and typing of integrons in epidemic strains of Acinetobacter baumannii found in the United Kingdom. J. Clin. Microbiol. 43:3074–3082.PubMedCrossRefGoogle Scholar
  89. Vila, J., Marcos, F., Marco, M. A., Abadía, S., Vergara, Y., Reig, R., Gómez-Lus, R. and Jiménez de Anta, M. T. 1993. In vitro antimicrobial production of β-lactamases, aminoglycoside-modifying enzymes, and chloramphenicol acetyltransferase by and susceptibility of clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 37:138–141.PubMedGoogle Scholar
  90. Vila, J., Ruiz, J., Goñi, P., Marcos, M. A. and Jimenez de Anta, M. T. 1995. Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 39:1201–1203.PubMedGoogle Scholar
  91. Vila, J., Navia, M., Ruiz, J. and Casals, C. 1997. Cloning and nucleotide sequence análisis of a gene encoding a OXA-derived β-lactamase in Acinetobacter baumannii. Antimicrob. Agents Chemother. 41:2757–2759.PubMedGoogle Scholar
  92. Vila, J., Goñi, P. and Jimenez de Anta, M. T. 1997. Quinolone resistant mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J. Antimicrob. Chemother. 39:757–762.PubMedCrossRefGoogle Scholar
  93. Vila, J., Ruiz, J., Navia, J., Becerril, J., Garcia, I., Perea, S., López-Hernández, I., Alamo, I., Ballester, F., Planes, A. M., Martínez-Beltran, J. and Jiménez de Anta, M. T. 1999. Spread of a mikacin resistance in Acinetobacter baumannii isolated in Spain is due toa n epidemia strain. J. Clin. Microbiol. 37:758–761.PubMedGoogle Scholar
  94. Vila, J. 2005. Fluoroquinolone resistance. In Frontiers in Antimicrobial Resistance: A tribute to Stuart B. Levy, eds. D.G. White, M.N. Alekshun and P.F. McDermott, pp. 41–52. Washington, DC: ASM PressGoogle Scholar
  95. Vila, J., Martí, S. and Sánchez-Céspedes, J. 2007. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 59:1223–1229.Google Scholar
  96. Wolff, M., Joly-Guillou, M. L., Farinotti, R. and Carbon, C. 1999. In vivo efficacies of combinations of β-lactams, β-lactamase inhibitors, and rifampin against Acinetobacter baumannii in a mouse pneumonia model. Antimicrob. Agents Chemother. 43:1406–1411.PubMedGoogle Scholar
  97. Wood, G. C., Hanes, S. D., Croce, M. A., Fabian, T. C. and Boucher, B. A. 2002. Comparison of ampicillin-sulbactam and imipenem-cilastatin for the treatment of Acinetobacter baumannii ventilator-associated pneumonia. Clin. Infect. Dis. 34:1425–1430.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jordi Vila
    • 1
  • Jerónimo Pachón
    • 1
  1. 1.Department of Clinical Microbiology, Hospital Clinic, School of MedicineUniversity of BarcelonaSpain

Personalised recommendations