Advertisement

Experimental Models of Acinetobacter Infection

  • Marie Laure Joly-Guillou
  • Michel Wolff
Chapter
Part of the Infectious Agents and Pathogenesis book series (IAPA)

Introduction

The use of animals as models for microbiological infections is a fundamental part of infectious disease research. The intent for the use of animals as models of disease is to establish an infection that mimics that seen in humans (Druilhe et al., 2002). The goal is to seek how the infection develops, and by what the infection can be thwarted. Hence, animal models can be proposed to study the virulence and pathogenicity of a microorganism or to screen candidate antibiotics for their performance in eliminating the infection. Because Acinetobacter frequently develops resistance to antibiotics, experimental models of infection are useful in pharmacokinetic assays and/or for the study of various antibiotic regimens. Study on virulence is still in an elementary stage.

The use of animal models must be approved by the Ethical Committee for animal experiments.

Importance of Various Parameters in Experimental Models

The objective of an infections model is to mimic human infection in...

Keywords

Acinetobacter Baumannii Antibiotic Regimen Susceptible Strain Acute Pneumonia Body Louse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bernabeu-Wittel, M., Pichardo, C., Garcia-Curiel, A., Pachon-Ibanez, M.E., Ibanez-Martinez, J., Jimenez-Mejias, M.E., Pachon, J. 2005. Phamacokinetic/pharmacodynamic assessment of the in-vivo efficacy of imipenem alone or a combination with amikacin for the treatment of experimental multi-resistant Acinetobacter baumannii pneumonia. Clin Microbiol Infect. 11:319–25.PubMedCrossRefGoogle Scholar
  2. Druilhe, P., Hagan, P., Rook, G.A. 2002. The importance of models of infection in the study of disease resistance. Trends Microbiol. 10:S38–46PubMedCrossRefGoogle Scholar
  3. Erridge, C., Moncayo-Nieto, O.L., Morgan, R., Young, M., Poxton, I.R. 2007. Acinetobacter baumannii lipopolysaccharides are potent stimulators of human monocyte activation via toll-like receptor 4 signalling. J Med Microbiol. 56:165–71.PubMedCrossRefGoogle Scholar
  4. Houhamdi, L., Raoult, D. 2006. Experimental infection of human body lice with Acinetobacter baumannii. Am J Trop Med Hyg. 74:526–31.PubMedGoogle Scholar
  5. Joly-Guillou, M.L. 1999. Importance de l'inoculum microbien dans les modèles expérimentaux: impact sur l'antibiothérapie. Antibiotiques. 1:77–81.Google Scholar
  6. Joly-Guillou, M.L., Wolff, M., Farinotti, R., Bryskier, A., Carbon, C. 2000. In vivo activity of levofloxacin alone or in combination with imipenem or amikacin in a mouse model of Acinetobacter baumannii pneumonia. J Antimicrob Chemother. 46:827–30.PubMedCrossRefGoogle Scholar
  7. Joly-Guillou, M.L., Wolff, M., Pocidalo, J.J., Walker, F., Carbon, C. 1997. Use of a new mouse model of Acinetobacter baumannii pneumonia to evaluate the post-antibiotic effect of imipenem. Antimicrob Agents Chemother. 41:345–51.PubMedGoogle Scholar
  8. Knapp, S., Wieland, C.W., Florquin, S., Panthophlet, R., Dijkshoorn, L., Tshimbalanga, N., Arika, S., Van Der Poll, T. 2006. Differential roles of CD14 and toll-like receptors 4 and 2 in murine Acinetobacter pneumonia. Am J Respir Crit Care Med. 173:122–29.PubMedCrossRefGoogle Scholar
  9. Montero, A., Ariza, J., Corbella, X., Doménech, A., Cabellos, C., Ayats, J., Tubau, F., Ardanuy, C., Gudiol, F. 2002. Efficacy of colistin versus β-lactams, aminoglycosides, and rifampin as monotherapy in a mouse model of pneumonia caused by multiresistant Acinetobacter baumannii. Antimicrob Agents Chemother. 46:1946–52.PubMedCrossRefGoogle Scholar
  10. Montero, A., Ariza, J., Corbella, X., Domenech, A., Cabellos, C., Ayats, J., Tubeau, F., Borraz, C., Gudiol, F. 2004. Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. J Antimicrob Chemother. 54:1085–91.PubMedCrossRefGoogle Scholar
  11. Obana, Y., Nishino, T., Tanino, T. 1985. In-vitro and in-vivo activities of antimicrobial agents against Acinetobacter calcoaceticus. J Antimicrob Chemother. 15:441–48.PubMedCrossRefGoogle Scholar
  12. Obana, Y. 1986. Pathogenic significance of Acinetobacter calcoaceticus: analysis of experimental infection in mice. Microbiol Immunol. 30:645–57.PubMedGoogle Scholar
  13. Pachon-Ibanez, M.E., Fernandez-Cuenca, F., Docobo-Perez, F., Pachon, J., Pascual, A. 2006. Prevention of rifampicin resistance in Acinetobacter baumannii in an experimental pneumonia murine model, using rifampicin associated with imipenem or sulbactam. J Antimicrob Chemother. 58:689–92.PubMedCrossRefGoogle Scholar
  14. Pantopoulou, A., Giamarellos-Bourboulis, E.J., Raftogannis, M., Tsaganos, T., Dontas, I., Koutoukas, P., Baziaka, F., Giamarellou, H., Perrea, D. 2007. Colistin offers prolonged survival in experimental infection by multidrug-resistant Acinetobacter baumannii: the significance of co-administration of rifampicin. Intern J Antimicrob Agents. 29:51–55.CrossRefGoogle Scholar
  15. Rathinavelu, S., Zavros, Y., Merchant, J.L. 2003. Acinetobacter lwoffii infection and gastritis. Microbes Infect. 5:651–57.PubMedCrossRefGoogle Scholar
  16. Renckens, R., Roelofs, J.J.T.H., Knapp, S., De Vos, A.F., Florquin, S., Van Der Poll, T. 2006. The acute-phase response and serum amyloid A inhibit the inflammatory response to Acintobacter baumannii pneumoniae. J Infect Dis. 193:187–95.PubMedCrossRefGoogle Scholar
  17. Rodriguez-Hernandez, M.J., Cuberos, L., Pichardo, C., Caballero, F.J., Moreno, I., Jimenez-Mejias, M.E., Garcia-Curiel, A., Pachon, J. 2001. Sulbactam efficacy in experimental models caused by susceptible and intermediate Acinetobacter baumannii strains. J Antimicrob Chemother. 47:479–82.PubMedCrossRefGoogle Scholar
  18. Rodriguez-Hernandez, M.J., Pachon, J., Pichardo, C., Cuberos, L., Ibanez-Martinez, J., Garcia-Curiel, A., Caballero, F.J., Moreno, I., Jimenez-Mejias, M.E. 2000. Iimpenem, doxycycline and amikacin in monotherapy and in combination in Acinetobacter baumannii experimental pneumonia. J Antimicrob Chemother. 45:493–501.PubMedCrossRefGoogle Scholar
  19. Wolff, M., Joly-Guillou, M.L., Farinotti, R., Carbon, C. 1999. In vivo efficacies of combinaisons of β- lactams, β-lactamase inhibitors, and rifampin against Acinetobacter baumannii in a mouse pneumonia model. Antimicrob agents Chemother. 43:1406–11.PubMedGoogle Scholar
  20. Wiles, S., Hanage, W.P., Frankel, G., Robertson, B. 2006. Modelling infectious disease – time to think outside the box? Nat Rev Microbiol. 4:307–12.PubMedCrossRefGoogle Scholar
  21. Zavros, Y., Rieder, G., Ferguson, A., Merchant, J.L. 2002. Gastridis and hypergastrinemia due to Acinetobacter lwoffii in mice. Infect Immun. 70:2630–39.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marie Laure Joly-Guillou
    • 1
  • Michel Wolff
    • 1
  1. 1.Service de Réanimation MédicaleCHU Bichat-C BernardFrance

Personalised recommendations