Skip to main content

Forecasting and Assessing the Large-Scale and Long-Term Impacts of Global Environmental Change on Terrestrial Ecosystems in the United States and China

  • Chapter
Book cover Real World Ecology

Abstract

The Earth’s terrestrial ecosystems have experienced a complex set of global changes, occurring on large spatial-temporal scales and interactively affecting individual organisms and ecological systems, most of which are not amenable to direct experimentation. To understand, predict, and assess the large-scale and long-term impacts of global changes on the Earth’s terrestrial ecosystems, we need such a new approach for extrapolating the growth of plants, animals, or ecosystems into the future when climate, CO2, and other factors may be different, and extrapolating individual plant or site studies onto a regional or global scale. In this chapter, we present such a newly developed approach called the Regional Integration System for Earth’s ecosystem (RISE), which builds upon improved knowledge of the fundamental mechanisms of ecological systems, and supported by rapidly developing technology from high-speed computer systems to high-resolution remote sensing sources with global coverage. Then we apply the RISE to address our common understanding of perhaps the most important issue facing humankind in the twenty-first century, our disruption of the global carbon cycle. We use two case studies to illustrate the overall merits and applications of the RISE in terrestrial ecosystem research. In the first case study, the RISE has been used to predict and assess the impacts of global change on net primary productivity and ecosystem carbon storage in southeastern U.S. under current climatic conditions and future climate scenarios. In the second case study, we have used the RISE to assess changes in ecosystem carbon storage and fluxes induced by multiple environmental stresses including climate variability/change, land-use and land-cover change, elevated carbon dioxide, and air pollution in China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AVHRR:

Advanced Very High Resolution Radiometer

CLC:

Scenario combined Climate, Land Use, and CO2 effects

CLM:

Climate Change only

DGVM:

Dynamic Global Vegetation Model

DLEM:

Dynamic Land Ecosystem Model

ETM:

Enhanced Thematic Mapper

fPAR:

Fraction of Photosynthetically Active Radiation

GCM:

General Circulation Model

GEOMOD:

Geographical Modeling

GIS:

Geographic Information System

GISS:

Goddard Institute for Space Studies

GPP:

Gross Primary Production

IPCC:

Intergovernmental Panel on Climate Change

LAI:

Leaf Area Index

LUCC:

Land Use Cover and Change

LULC:

Land Use and/or Land Cover

MATCH:

Multi-scale Atmospheric Transport and Chemistry

MIT IGSM:

Massachusetts Institute of Technology’s Integrated Global System Model

MODIS:

Moderate-resolution Imaging Spectroradiometer

NARR:

North American Regional Reanalysis

NCE:

Net Carbon Exchange

NCEP:

National Center for Environmental Prediction

NEP:

Net Ecosystem Production

NPP:

Net Primary Production

NOAH:

NCEP, Oregon State University, Air Force, and Hydrologic Research Lab

OCLC:

Scenario combined O3, Climate, Land Use, and CO2 effects

PFT:

Plant Functional Type

RCM:

Regional Climate Model

RegEM:

Regional Ecosystem Model

RISE:

Regional Integration System for Earth’s ecosystem

SEUS:

Southeastern U.S.

SOC:

Soil Organic Carbon

TEM:

Terrestrial Ecosystem Model

TOTEC:

Total Terrestrial Carbon Storage

References

  • Aber, J. D., and C.A. Federer. 1992. A Generalized, Lumped-Parameter Model of Photosynthesis, Evapotranspiration, and Net Primary Production in Temperate and Boreal Forest Ecosystems. Oecologia 92: 463–474.

    Article  Google Scholar 

  • Bacour, C., F. Baret, D. Beal, M. Weiss., and K. Pavageau. 2006. Neural network estimation of LAI, fAPAR, fCover and LAIxC(ab), from top of canopy MERIS reflectance data: principles and validation. Remote Sensing of Environment 105: 313–325.

    Article  Google Scholar 

  • Chameides, W., X. Li, X. Zhou, C. Luo, C.S. Kiang, J.S. John, R.D. Saylor, S.C. Liu., and K.S. Lam 1999. Is ozone pollution affecting crop yield in China? Geophysical Research Letter 26: 867–870.

    Article  CAS  Google Scholar 

  • Chen, G., H. Tian, M. Liu, W. Ren, C. Zhang., and S. Pan. 2006. Climate Impacts on China's Terrestrial Carbon Cycle: An Assessment with the Dynamic Land Ecosystem Model. In: Tian, H.Q. editor. Environmental Modeling and Simulation, ACTA Press, Anaheim/Calgary/Zurich, pp. 56–70.

    Google Scholar 

  • Cohen, W.B., and S.N. Goward. 2004. Landsat’s role in ecological applications of remote sensing. BioScience 54: 535–545.

    Article  Google Scholar 

  • Delcourt, H., and W. Harris. 1980. Carbon budget of the Southeastern U.S. biota: analysis of historical change in trend from source to sink. Science, 210: 321–323.

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer J.R., and C. Field. 1993. Scaling Physiological Processes: Leaf to Globe. Academic Press, San Diego, CA, pp. 141–158.

    Google Scholar 

  • Fan S.M., S.C., Wofsy, P.S. Bakwin, and D.J. Jacob. 1990. Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon forest. Journal of Geophysical Research 95: 16851–16864.

    Article  CAS  Google Scholar 

  • Felzer, B., J.M. Reilly, D. Kicklighter, M. Sarofim, C. Wang, R.G. Prinn, and Q. Zhuang (2005), Future effects of ozone on carbon sequestration and climate change policy using a global biochemistry model. Climatic Change 73: 195–425.

    Article  Google Scholar 

  • Felzer, B., D. Kicklighter, J. Melillo, C. Wang, Q. Zhuang, and R. Prinn. 2004. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus 56B: 230–248.

    CAS  Google Scholar 

  • Friend, A.D., A.K. Stevens, R.G. Knox, and M.G.R. Cannell. 1997. A process-based, biogeochemical, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological Modeling 95: 249–287.

    Article  CAS  Google Scholar 

  • Ge, Q., J. Dai, F. He, J. Zheng, Z. Man, and Y. Zhao. 2003. Spatiotemporal dynamics of reclamation and cultivation and its driving factors in parts of China during the last three centuries. Progress in Natural Science 14 (7): 605–613.

    Article  Google Scholar 

  • Gobron, N., B. Pinty, O. Aussedat, J. Chen, W. Cohen, R. Fensholt, V. Gond, K.F. Husmmrich, T. Lavergne, F. Melin, J.L. privette, I. Sandholt, M. Taberner, D.P. Turner, M.M Verstraete, and J.L. Widlowske. 2006 Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: methodology and results using Joint Research Center products derived from Sea WiFS against ground-based estimation. Journal of Geophysical Research 111: Art. No.D1311o.

    Article  Google Scholar 

  • Grell, G.A., J. Dudhia, and D.R. Stauffer. 1994. A description of the fifth-generation Penn State / NCAR Mesoscale Model (MM5). NCAR Technical Note NCAR / TN3981STR, 119 pp.

    Google Scholar 

  • Haefner, W. 2005. Modeling biological systems: principles and applications. Springer, New York.

    Google Scholar 

  • Hall C.A.S., H. Tian, Y. Qi., G. Pontius, J. Cornell, and J. Uhlig. 1995. Modeling spatial and temporal patterns of tropical land use change. Journal of Biogeochemistry 22: 753–757.

    Google Scholar 

  • Heagle, A.S. 1989. Ozone and crop yield. Annual Review of Phytopathology 27: 397–423.

    CAS  Google Scholar 

  • Hilborn, R., and M. Mangel. 1997. The Ecological Detective: Confronting Models with Data. Princeton (NJ): Princeton University Press.

    Google Scholar 

  • Houghton, R. A., and J. L. Hackler 2003. Sources and sinks of carbon from land-use change in China. Global Biogeochemical Cycles 17 (2): 1029–1034.

    Article  Google Scholar 

  • Huang, Y., W. Zhang, X. Zheng, J. Li, and Y. Yu. 2004. Modeling methane emission from rice paddies with various agricultural practices. Journal of Geophysical Research doi: 10.1029/2003JD004401.

    Google Scholar 

  • Huang, Y., R.L. Sass, and F.M. Fisher. 1998. A semi-empirical model of methane emission from flooded rice paddy soils. Global Change Biology 4: 247–268.

    Article  Google Scholar 

  • IPCC. 2001. Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change [Houghton, J.T.Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp.

    Google Scholar 

  • Jackson, L.J., A.S. Trebitz, and K.L. Cottingham. 2000. An introduction to the practice of ecological modelling. BioScience, 50 (8): 694–706.

    Article  Google Scholar 

  • King A.W. 1991 Translating models across scales in the landscape. pp 479–517 in M.Turner and R. Gardner, editors. Quantitative Methods in Landscape Ecology: the Analysis and Interpretation of Landscape Heterogeneity. Springer-Verlag, NY.

    Google Scholar 

  • Lawrence, M.G., and P.J. Crutzen. (1999), Influence of NOx emissions from ships on tropospheric photochemistry and climate. Nature 402: 167–170.

    Article  CAS  Google Scholar 

  • Lauenroth, W.K., I.C. Burke, and J.K. Berry. 2003. The state of dynamic quantitative modelling in ecology, in Canham C.D., J.J. Cole, and W.K. Lauenroth. editors. Models in Ecosystem Science. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Levin, S.A. 1992. The problem of pattern and scale in ecology. Ecology 73 (6): 1943–1967.

    Article  Google Scholar 

  • Li C.S., Y. Zhuang, M. Cao, P. Crill, Z. Dai, S. Frolking, B. Moore, W. Salas, W. Song and X. Wang. 2001. Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China. Nutrient Cycling in Agroecosystems, 60: 159–175.

    Article  CAS  Google Scholar 

  • Li C. S. 2000. Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems 58: 259–276.

    Article  CAS  Google Scholar 

  • Liang, S. 2007. Recent developments in estimating land surface biophysical variables from optical remote sensing. Progress in Physical Geography 31: 501–516.

    Article  Google Scholar 

  • Liu, J., H. Tian, M. Liu, D. Zhuang, J.M. Melillo, and Z. Zhang. 2005a. China’s changing landscape during the 1990s: Large-scale land transformation estimated with satellite data. Geophysical Research Letters 32: L02405, doi: 10.1029/2004GL021649.

    Article  Google Scholar 

  • Liu, J., M. Liu, H. Tian, D. Zhuang, Z. Zhang, W. Zhang, X. Tang, and X. Deng. 2005b. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sensing of Environment 98: 442–456.

    Article  Google Scholar 

  • Lu, D., and Q. Weng. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28 (5): 823–870.

    Article  Google Scholar 

  • Lu, D. 2006. The potential and challenge of remote sensing–based biomass estimation. International Journal of Remote Sensing 27 (7): 1297–1328.

    Article  Google Scholar 

  • Mayer, M., C. Wang, M. Webster., and R.G. Prinn. 2000. Linking local air pollution to global Chemistry and climate. Journal of Geophysical Research 105 (D18): 22,869–22,896.

    Article  CAS  Google Scholar 

  • McGuire, A.D., S. Sitch, J.S. Clein, R. Dargaville, G. Esser, J. Foley, M. Heimann, F. Joos, J. Kaplan, D.W. Kicklighter, R.A. Meier, J.M. Melillo, B. Moore III, I.C. Prentice, N. Ramankutty, T. Reichenau, A. Schloss, H. Tian, L.J. Williams, and U. Wittenberg. 2001 Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land-use effects with four process-based ecosystem models. Global Biogeochemical Cycles 15 (1): 183–206.

    Article  CAS  Google Scholar 

  • Melillo, J.M, A.D. McGuire, D.W. Kicklighter, B. Moore, C.J. Vorosmarty, and A.L. Schloss. 1993. Global climate change and terrestrial net primary production. Nature 363: 234–240.

    Article  CAS  Google Scholar 

  • Mickley, L.J., D.J. Jacob, B.D. Field, and D. Rind. 2004. Climate response to the increase in tropospheric ozone since preindustrial times: A comparison between ozone and equivalent CO2 forcing. Journal of Geophysical Research 109(D05106): doi: 10.1029/2003JD003653.

    Google Scholar 

  • Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington DC.

    Google Scholar 

  • Nightingale, J.M., S.R. Phinn, and A.A. Held. 2004. Ecosystem process models at multiple scales for mapping tropical forest productivity. Progress in Physical Geography 28: 241–281.

    Article  Google Scholar 

  • Ollinger, S.V., J.D. Aber, and P.B. Reich. 1997. Simulating ozone effects on forest productivity: interactions among leaf-canopy and stand-level processes. Ecological Applications 7 (4): 1237–1251.

    Article  Google Scholar 

  • O’Neill, R.V., and R.H. Gardner. 1979. Source of uncertainty in ecological models. In Zeigler, B.P., M.S. Elzas, G.J. Klir, and T.I. Oren. editors, Methodology in Systems Modeling and Simulation. North Holland, Amsterdam. 447–463.

    Google Scholar 

  • O’Neill, R.V., D.L. Deangelis, J.B. Waide, and T.F.H. Allen. 1986. A Hierarchical Concept of Ecosystems. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Oreskes N., K. Shrader-Frechette, and K. Belitz. 1994. Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263: 641–646.

    Article  CAS  PubMed  Google Scholar 

  • Parton, W.J., W.K. Lauenroth, D.L Urban., D.P. Coffin, H.H. Shugart, T.B. Kirchner, and T.M. Smith. 1993. Modelling vegetation structure-ecosystem process interactions across sites and ecosystems. Ecological Modeling 67 (1): 49–80.

    Article  Google Scholar 

  • Parton, W.J., J.W.B. Stewart, and C.V. Cole. 1988. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5 (1): 109–131.

    Article  CAS  Google Scholar 

  • Pontius R.G., 2001. Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing 66 (8): 1011–1016.

    Google Scholar 

  • Raich, J.W., E.B. Rastetter, J.M. Melillo, D.W. Kicklighter, P.A. Steudler, B.J. Peterson, A.L. Grace, B. Moore III, and C.J. Vorosmarty. 1991. Potential net primary productivity in South America: application of a global model. Ecological Applications 1: 399–429.

    Article  Google Scholar 

  • Ramankutty, N., and J. Foley. 1999. Estimating historical changes in land cover: North American croplands from 1850 to 1992. Global Ecology and Biogeography 8: 381–396.

    Article  Google Scholar 

  • Ramankutty, N., and J.A. Foley. 1998. Characterizing patterns of global land use: An analysis of global croplands data. Global Biogeochemical Cycles 12 (4): 667–685.

    Article  CAS  Google Scholar 

  • Rasch, D.A.M.K., E.M.T. Hendrix, and E.P.J. Boer. 1997. Replication-free optimal designs in regression analysis. Computer Statistic 12: 19–52.

    Google Scholar 

  • Rastetter, E.B., 1996. Validating models of ecosystem response to global change. BioScience, 46 (3): 190–198

    Article  Google Scholar 

  • Ren, W., H. Tian, M. Liu, C. Zhang, G. Chen, S. Pan, B. Felzer, and X. Xu. 2007a. Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. Journal of Geophysical Research 112: D22S09, doi: 10.1029/2007JD008521.

    Article  Google Scholar 

  • Ren, W., H. Tian, G. Chen, M. Liu, C. Zhang, A. Chappelka, and S. Pan. 2007b. Influence of ozone pollution and climate variability on grassland ecosystem productivity across China. Environmental Pollution 149: 327–335.

    Article  CAS  PubMed  Google Scholar 

  • Rind, D., J. Lerner, K. Shah, and R. Suozzo. 1999. Use of on-line tracers as a diagnostic tool in general circulation model development: 2. Transport between the troposphere and stratosphere. Journal of Geophysical Research 104: 9151–9167.

    Article  Google Scholar 

  • Running, S.W., R.R. Nemani, F.A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto. 2004. A continuous satellite-derived measure of global terrestrial primary productivity: Future science and applications. Bioscience 56: 547–560.

    Article  Google Scholar 

  • Running, S., D. Baldocchi, D. Turner, S. Gower, P. Bakwin, and K. Hibbard. 1999. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment 70: 108–127.

    Article  Google Scholar 

  • Shi, X., D. Yu, X. Pan, W. Sun, H. Wang, and Z. Gong. 2004. 1:1,000,000 soil database of China and its application. In: Proceedings of 10th National Congress of Soil Science of China. Science Press, Beijing, China, 142–145. (in Chinese).

    Google Scholar 

  • Sitch S., B. Smith., I.C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J.O. Kaplan, S. Levis, W. Lucht, M.T. Sykes, K. Thonicke, and S. Venevsky. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9: 161–185.

    Article  Google Scholar 

  • Thornton, P.E., S.W. Running., and M.A. White. 1997. Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology 190: 241–251.

    Article  Google Scholar 

  • Tian, H. (Eds.) 2006a. Environmental Modeling and Simulation, ACTA Press. New York.

    Google Scholar 

  • Tian, H., S. Wang, J. Liu, S. Pan, H. Chen, C. Zhang, and X. Shi. 2006b. Patterns of soil nitrogen storage in China. Global Biogeochemical Cycles, 20, GB1001, doi:10.1029/2005GB002464.

    Article  Google Scholar 

  • Tian, H., M. Liu, C. Zhang, W. Ren, G. Chen, X. Xu., and C. Lv. 2005. DLEM-The Dynamic Land Ecosystem Model, User Manual. The ESRA (Ecosystem Science and Regional Analysis) Laboratory, Auburn University, Auburn, AL.

    Google Scholar 

  • Tian, H., J.M. Melillo, D.W. Kicklighter, S. Pan, J. Liu, A.D. McGuire, and B. Moore III. 2003. Regional carbon dynamics in monsoon Asia and its implications to the global carbon cycle. Global and Planetary Change 37: 201–217

    Google Scholar 

  • Tian, H., J.M. Melillo, D.W. Kicklighter, A.D. McGuire, and J. Helfrich. 1999. The sensitivity of terrestrial carbon storage to historical atmospheric CO2 and climate variability in the United States. Tellus 51B: 414–452.

    CAS  Google Scholar 

  • Tian, H., J.M. Melillo, D.W. Kicklighter, A.D. McGuire, J.V.K. Helfrich, B. Moore, and C.J. Vörösmarty. 1998a. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396: 664–667.

    Article  CAS  Google Scholar 

  • Tian, H., C.A. Hall, and Y. Qi. 1998b. Modeling primary productivity of the terrestrial biosphere in changing environments: toward a dynamic biosphere model. Critical Reviews in Plant Sciences 15 (5): 541–557.

    Article  Google Scholar 

  • Turner, D.P., S.V. Ollinger, and J.S. Kimball. 2004. Integrating remote sensing and ecosystem process models for landscape- to regional-scale analysis of the carbon cycle. BioScience 54: 573–584.

    Article  Google Scholar 

  • Vitousek, P.M., H.A. Mooney, J. Lubchenco, and J.M. Melillo. 1997. Human domination of Earth's ecosystems. Science 277: 494–499.

    Article  CAS  Google Scholar 

  • Wang, S., H. Tian, J. Liu, and S. Pan. 2003. Pattern and change in soil organic carbon storage in China: 1960s–1980s. Tellus 55B: 416–427.

    CAS  Google Scholar 

  • Wang, C., R.G. Prinn, and A. Sokolov. 1998. A global interactive chemistry and climate model: formulation and testing. Journal of Geophysical Research 103 (D3): 3399–3418.

    Article  CAS  Google Scholar 

  • Wang, X., W. Manning, Z. Feng., and Y.G. Zhu. 2007. Ground-level ozone in China: Distribution and effects on crop yields. Environmental Pollution 147 (2): 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Wear, D., and P. Bolstad. 1998. Land-use changes in southern Appalachian landscapes: Spatial analysis and forecast evaluation. Ecosystems 1: 575–594.

    Article  Google Scholar 

  • Wulder, M.A., R.J. Hall, N.C. Coops, and S.E. Franklin. 2004. High spatial resolution remotely sensed data for ecosystem characterization. Bioscience 54: 511–521.

    Article  Google Scholar 

  • Xu, D.F. 1983. Statistical Data of Agricultural Production and Trade in Modern China. Shanghai: Shanghai People’s Press.

    Google Scholar 

  • Zhang, C., H. Tian, A. Chappelka, W. Ren, H. Chen, S. Pan, M. Liu, D. Styers, G. Chen, and Y. Wang. 2007a. Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountains. Environmental Pollution 149: 336–347.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., H. Tian, S. Pan, G. Lockaby, E. Schilling, and J. Stanturf. 2007b. Effects of forest regrowth and urbanization on ecosystem carbon storage in a rural-urban gradient in the southeast US. Ecosystems, doi: 10.1007/s10021-006-0126-x.

    Google Scholar 

  • Zhao, M., S.W. Running, and R. Nemani. 2006. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological re-analyses. Journal of Geophysical Research 111: G01002, doi:10.029/2004JG000004.

    Article  Google Scholar 

  • Zhuang, Q, J.M. Melillo, D.W. Kicklighter, R. Prinn, A.D. McGuire, P.A. Steudler, B. Felzer., and S. Hu. 2004. Methane Fluxes Between Terrestrial Ecosystems And the Atmosphere at Northern High Latitudes During the Past Century: A Retrospective Analysis with a Process-based Biogeochemistry Model. Global Biogeochemical Cycles 18: GB3010, doi:10.1029/2004GB002239.

    Article  Google Scholar 

Download references

Acknowledgment

This research has been supported by NASA Interdisciplinary Science Program (NNG04GM39C), NASA Land Use and Land Cover change Program, DOE NICCR Program, US EPA 2004-STAR-L1 (RD-83227601) and AAES Program. We thank Drs. Yuhang Wang, Tao Zeng, and L. Ruby Leung for providing the regional climate data of the southeastern U.S., Dr. Felzer for providing the troposheric ozone data set for China, and Drs. Martha K. Nungesser and ShiLi Miao for providing valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanqin Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tian, H. et al. (2009). Forecasting and Assessing the Large-Scale and Long-Term Impacts of Global Environmental Change on Terrestrial Ecosystems in the United States and China. In: Miao, S., Carstenn, S., Nungesser, M. (eds) Real World Ecology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77942-3_9

Download citation

Publish with us

Policies and ethics