The Role of Paleoecology in Whole-Ecosystem Science

  • Suzanne McGowan
  • Peter R. Leavitt


Paleoecological analyses provide exceptionally long time series of population abundance, community composition, environmental variability, ecosystem subsidies, and temporal variability that can uniquely inform and guide ecosystem managers and scientists conducting whole-ecosystem experiments. This chapter illustrates the potential of retrospective studies to inform, guide, and refine ecosystem experimentation and management using case studies derived from paleoecological studies of freshwater lakes. First, we illustrate how synchrony (temporal correlation) and variance partitioning analysis may be used to quantify the natural mechanisms underlying lake ontogeny in the absence of human effects in lakes from Southwest Greenland. Second, we show how a combination of biogeochemical (15N isotopes, pigments), time series and correlation analyses of sediment cores can be used to both reconstruct and characterise historical variance in sockeye salmon fisheries, and to elucidate the relationship between sockeye salmon and lake primary production in the Bristol Bay region of Alaska. Finally, we show how a combination of paleoecological analysis and long-term ecological monitoring programs can both identify the main causes of water quality change during the twentieth century and quantify the role of N in regulating primary production in lakes of the Canadian Prairies.


Pacific Decadal Oscillation Sockeye Salmon Salmon Population Lake Production Reference Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was funded by an EU Marie Curie Fellowship (SMcG), NSERC Canada, the Canada Research Chair program, Saskatchewan Learning, the National Science Foundation (grant DEB-0553766 to the National Center for Ecological Analysis and Synthesis during P.R.L. sabbatical), the Betty and Gordon Moore Foundation, the University of Notttingham (UK) and University of Regina (Canada). The authors also gratefully acknowledge the diverse contributions of past and present members of the University of Regina Limnology Laboratory, as well as our colleagues at University of Washington (D. E. Schindler), University of Loughborough (N. J. Anderson), Geological Survey of Denmark and Greenland (R. K. Juhler), Queen’s University (J. P. Smol, S. Dixit, A. Dixit), York University (R. Quinlan), McGill University (I. Gregory-Eaves) and University of Alaska Fairbanks (B. Finney). We thank the four anonymous reviewers for their insights in improving earlier versions of this chapter.


  1. Allen, R. J., and B. C. Kenney 1978. Rehabilitation of eutrophic prairie lakes. Mitteilungen Internationale Vereinigung für theoretische und angewandte Limnologie 20: 214–224.Google Scholar
  2. Anderson, C., and G. Cabana 2005. δ15N in riverine food webs: effects of N inputs from agricultural watersheds. Canadian Journal of Fisheries and Aquatic Sciences 62: 333–340.CrossRefGoogle Scholar
  3. Anderson, N. J., R. Harriman, D. B. Ryves, and S. T. Patrick. 2001. Dominant factors controlling variability in the ionic composition of West Greenland lakes. Arctic, Antarctic and Alpine Research 33: 418–425.CrossRefGoogle Scholar
  4. Anderson, N. J., A. Clarke, R. K. Juhler, S. McGowan, and I. Renberg. 2000. Coring of laminated sediments for pigment and mineral magnetic analyses, Søndre Strømfjord, West Greenland. Geology of Greenland Survey Bulletin 186: 83–87.Google Scholar
  5. Appleby, P. G., and F. Oldfield. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Cantena 5: 1–8.CrossRefGoogle Scholar
  6. Battarbee, R. W., N.J. Anderson, E. Jeppesen, and P.R. Leavitt. 2005. Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology 50: 1772–1780.CrossRefGoogle Scholar
  7. Battarbee, R. W. 1999. The importance of palaeolimnology to lake restoration. Hydrobiologia 395/396: 149–159.CrossRefGoogle Scholar
  8. Bedard-Haughn, A., J. W. van Groenigen, and C. van Kessel. 2003. Tracing N-15 through landscapes: potential uses and precautions. Journal of Hydrology 272: 175–190.CrossRefGoogle Scholar
  9. Bennett, E. M., S. R. Carpenter, and N. F. Caraco. 2001. Human impact on erodable phosphorus and eutrophication: A global perspective. Biosciences 51: 227–234.CrossRefGoogle Scholar
  10. Bennett, E. M., T. Reed-Anderson, J. N. Houser, J. R. Gabriel, and S. R. Carpenter. 1999. A phosphorus budget for the Lake Mendota watershed. Ecosystems 2: 69–75.CrossRefGoogle Scholar
  11. Bennion, H., S. Juggins, and N. J. Anderson. 1996. Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environmental Science and Technology 30: 2004–2007.CrossRefGoogle Scholar
  12. Berger, A. L. 1978. Long-term variations of calorific insolation resulting from the earth's orbital elements. Quaternary Research 9: 139–67.CrossRefGoogle Scholar
  13. Birks, H. J. B. 1998. D. G. Frey & E. S. Deevey Review #1. Numerical tools in palaeolimnology- Progress, potentialities, and problems. Journal of Paleolimnology 20: 307–332.CrossRefGoogle Scholar
  14. Blenckner, T. 2005. A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia 533: 1–14.CrossRefGoogle Scholar
  15. Borcard, D. and P. Legendre. 1994. Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics 1: 37–61.CrossRefGoogle Scholar
  16. Borcard, D., P. Legendre and P. Drapeau. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  17. Brahney, J., D. G. Bos, M. G. Pellatt, T. W. D. Edwards, and R. Routledge. 2006. The influence of nitrogen limitation on δ15N and carbon: nitrogen ratios in sediments from sockeye salmon nursery lakes in British Columbia, Canada. Limnology and Oceanography 51: 2333–2340.CrossRefGoogle Scholar
  18. Brock, C. S., P.R. Leavitt, D. E. Schindler, and P. D. Quay. 2007. Variable effects of marine-derived nutrients on algal production in salmon nursery lakes of Alaska during the past 300 years. Limnology and Oceanography 52: 1588–1598.Google Scholar
  19. Brock, C. S., P.R. Leavitt, D. E. Schindler, S. P. Johnson, and J. W. Moore. 2006. Spatial variability of stable isotopes and fossil pigments in surface sediments of Alaskan coastal lakes: constraints on quantitative estimates of past salmon abundance. Limnology and Oceanography 51: 1637–1647.CrossRefGoogle Scholar
  20. Bunting, L., P.R. Leavitt, C. E. Gibson, E. J. McGee, and V. A. Hall. 2007. Degradation of water quality in Lough Neagh, Northern Ireland, by diffuse nitrogen flux from a phosphorus-rich catchment. Limnology and Oceanography 52: 354–369.CrossRefGoogle Scholar
  21. Campbell, C. E., and E. E. Prepas. 1986. Evaluation of factors related to the unusually low chlorophyll levels in prairie saline lakes. Canadian Journal of Fisheries and Aquatic Sciences 43: 846–854.Google Scholar
  22. Carpenter, S. R., N.F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley and V. H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.CrossRefGoogle Scholar
  23. Clark, J. H. 2005. Abundance of sockeye salmon in the Alagnak River system of Bristol Bay Alaska. Anchorage: Alaska Department of Fish and Game.Google Scholar
  24. Cottingham, K. L., J. A. Rusak, and P.R. Leavitt. 2000. Increased ecosystem variability and reduced predictability following fertilization: evidence from palaeolimnology. Ecology Letters 3: 340–348.CrossRefGoogle Scholar
  25. Cuddington, K., and P.R. Leavitt. 1999. An individual-based model of pigment flux in lakes: implications for organic biogeochemistry and paleoecology. Canadian Journal of Fisheries and Aquatic Sciences 56: 1964–1977.CrossRefGoogle Scholar
  26. Cumming, B. F., K. R. Laird, J. R. Bennet, J. P. Smol, and A. K. Salomon. 2002. Persistent millenial-scale shifts in moisture regimes in western Canada during the past six millenia. Proceedings of the National Academy of Sciences 99: 16117–16121.CrossRefGoogle Scholar
  27. Dahl-Jensen, D., K. Mosegaard, N. Gundestrup, G. D. Clow, S. J. Johnsen, A. W. Hansen, and N. Balling. 1998. Past temperatures directly from the Greenland Ice sheet. Science. 282: 268–271.CrossRefPubMedGoogle Scholar
  28. Davies, J.-M. 2006. Application and tests of the Canadian water quality index for assessing changes in water quality in lakes and rivers of central North America. Lake and Reservoir Management 22: 308–320.CrossRefGoogle Scholar
  29. deBruyn, A. M. H., D. J. Marcogliese, and J. B. Rasmussen. 2003. The role of sewage in a large river food web. Canadian Journal of Fisheries and Aquatic Sciences 60: 1332–1344.CrossRefGoogle Scholar
  30. Dixit, A. S., R. I. Hall, P.R. Leavitt, R. Quinlan, and J. P. Smol. 2000. Effects of sequential depositional basins on lake response to urban and agricultural pollution: a palaeoecological analysis of the Qu'Appelle Valley, Saskatchewan, Canada. Freshwater Biology 43: 319–337.CrossRefGoogle Scholar
  31. Engstrom, D. R., S. C. Fritz, J. E. Almendinger, and S. Juggins. 2000. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408: 161–166.CrossRefPubMedGoogle Scholar
  32. Fair, L. F. 2003. Critical elements of Kvichak River sockeye salmon management. Alaskan Fisheries Research Bulletin 10: 95–103.Google Scholar
  33. Finney, B. P., I. Gregory-Eaves, M. S. V. Douglas, and J. P. Smol. 2002. Fisheries productivity in the northeastern Pacific Ocean over the past 2,200 years. Nature 416: 729–733.CrossRefPubMedGoogle Scholar
  34. Finney, B. P., I. Gregory-Eaves, J. Sweetman, M. S. V. Dougas, and J. P. Smol. 2000. Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years. Science 290: 795–799.CrossRefPubMedGoogle Scholar
  35. Foy, R. H., S. D. Lennox, and C. E. Gibson. 2003. Changing perspectives on the importance of urban phosphorus inputs as the cause of nutrient enrichment in Lough Neagh. Science of the Total Environment 310: 87–99.CrossRefPubMedGoogle Scholar
  36. Fritz, S. C., S. Juggins, R. W. Battarbee, and D. R. Engstrom. 1991. Reconstruction of past changes in salinity using a diatom-based transfer function. Nature 352: 706–708.CrossRefGoogle Scholar
  37. George, D. G., J. F. Talling, and E. Rigg. 2000. Factors influencing the temporal coherence of five lakes in the English Lake District. Freshwater Biology 43: 449–461.CrossRefGoogle Scholar
  38. Giani, A., D. F. Bird, Y. T. Prairie, and J. F. Lawrence. 2005. Empirical study of cyanobacterial toxicity along a trophic gradient of lakes. Canadian Journal of Fisheries and Aquatic Sciences 62: 2100–2109.CrossRefGoogle Scholar
  39. Glibert, P. M., C. A. Heil, D. Hollander, M. Revilla, A. Hoare, J. Alexander, and S. Murasko. 2004. Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida Bay. Marine Ecology Progress Series 280: 73–83.CrossRefGoogle Scholar
  40. Groot, C., and L. Margolis. 1991. Pacific salmon life histories. UBC Press.Google Scholar
  41. Hall, R. I., P. R. Leavitt, R. Quinlan, A. S. Dixit, and J. P. Smol. 1999. Effects of agriculture, urbanization and climate on water quality in the Northern Great Plains. Limnology and Oceanography 44: 739–756.CrossRefGoogle Scholar
  42. Hall, R. I., and J. P. Smol. 1999. Diatoms as indicators of lake eutrophication. In: The diatoms: applications for the environmental and earth sciences, ed. E. F. Stoermer and J. P. Smol, pp. 128–169. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  43. Hammer, U. T. 1973. Eutrophication and its alleviation in the upper Qu'Appelle River system, Saskatchewan, Canada. Hydrobiologia 37: 473–507.CrossRefGoogle Scholar
  44. Hasholt, B., and H. Søgaard. 1978. Et forsøg på en klimatisk-hydrologisk regionsinddeling af Holsteinsborg Kommune (Sisimuit). Geografisk Tidsskrift 77: 72–92.Google Scholar
  45. Heegaard, E., H. J. B. Birks and R. J. Telford. 2005. Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15: 612–618.CrossRefGoogle Scholar
  46. Hilborn, R., T. P. Quinn, D. E. Schindler, and D. E. Rogers. 2003. Biocomplexity and fisheries sustainability. Proceedings of the National Academy of Sciences 100: 6564–6568.CrossRefGoogle Scholar
  47. Hobbs, W. O., and A. P. Wolfe. 2007. Caveats on the use of paleolimnology to infer Pacific salmon returns. Limnology and Oceanography 52: 2053–2061.CrossRefGoogle Scholar
  48. Hyatt, K. D. 1985. Responses of sockeye salmon (Oncorhynchus nerka) to fertilization of British Columbia coastal lakes. Canadian Journal of Fisheries and Aquatic Sciences 42: 320–331.CrossRefGoogle Scholar
  49. IPCC. (2007). Summary for policymakers. In Climate Change 2007: the physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller. Cambridge: Cambridge University Press.Google Scholar
  50. Ives, A. R., B. Dennis, K. L. Cottingham, and S. R. Carpenter. 2003. Estimating community stability and ecological interactions from time-series data. Ecological Monographs 73: 301–330.CrossRefGoogle Scholar
  51. James, C., J. Fisher, and B. Moss. 2003. Nitrogen-driven lakes: the Shropshire and Cheshire Meres? Archiv für Hydrobiologie 158: 249–266.CrossRefGoogle Scholar
  52. Jeppesen, E., P.R. Leavitt, L. De Meester, and J. P. Jensen. 2001. Functional ecology and palaeolimnology: Using cladoceran remains to reconstruct anthropogenic impact. Trends in Ecology and Evolution 16: 191–198.CrossRefPubMedGoogle Scholar
  53. Kenney, B. C. 1990. Lake dynamics and the effects of flooding on total phosphorus. Canadian Journal of Fisheries and Aquatic Sciences 47: 480–485.CrossRefGoogle Scholar
  54. Kilinc, S., and B. Moss. 2002. Whitemere, a lake that defies some conventions about nutrients. Freshwater Biology 47: 207–218.CrossRefGoogle Scholar
  55. Laird, K. R., B. F. Cumming, S. Wunsam, J. Rusak, R. J. Oglesby, S. C. Fritz, and P. R. Leavitt. 2003. Lake sediments record large-scale shifts in moisture regimes across the northern prairies of North America during the past two millenia. Proceedings of the National Academy of Sciences 100: 2438–2488.CrossRefGoogle Scholar
  56. Leavitt, P. R., C. S. Brock, C. Ebel, and A. Patoine. 2006. Landscape-scale effects of urban nitrogen on a chain of freshwater lakes in central North America. Limnology and Oceanography 51: 2262–2277.CrossRefGoogle Scholar
  57. Leavitt, P. R., and D. A. Hodgson. 2001. Sedimentary pigments. In Tracking environmental changes using lake sediments, vol. 3: Terrestrial, algal and siliceous indicators, eds. J. P. Smol, H. J. B. Birks and W. M. Last. Dordrecht: Kluwer Academic Publishers.Google Scholar
  58. Leavitt, P. R., D. L. Findlay, R. I. Hall, and J. P. Smol. 1999a. Algal responses to dissolved organic carbon loss and pH decline during whole-lake acidification: evidence from paleolimnology. Limnology and Oceanography 44: 757–773.Google Scholar
  59. Leavitt, P. R., R. D. Vinebrooke, R. I. Hall, S. E. Wilson, J. P. Smol, R. E. Vance, and W. M. Last. 1999b. Multiproxy record of prairie lake response to climatic change and human activity: Clearwater Lake, Saskatchewan. Bulletin of the Geological Survey of Canada 534: 125–138.Google Scholar
  60. Lepš, J., and P. Šmilauer. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press.Google Scholar
  61. Magnuson, J. J., and T. K. Kratz. 2000. Lakes in the landscape: approaches to regional limnology. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 27: 74–87.Google Scholar
  62. Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78: 1069–1079.CrossRefGoogle Scholar
  63. McGowan, S., R. K. Juhler, and N.J. Anderson. 2008. Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes. Journal of Paleolimnology 39: 301–317.CrossRefGoogle Scholar
  64. McGowan, S., P. R. Leavitt, R. I. Hall, N. J. Anderson, E. Jeppesen, and B. V. Odgaard. 2005a. Controls of algal abundance and community composition during ecosystem state change. Ecology 86: 2200–2211.CrossRefGoogle Scholar
  65. McGowan, S., A. Patoine, M. D. Graham, and P. R. Leavitt. 2005b. Intrinsic and extrinsic controls on lake phytoplankton synchrony. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 29: 794–798.Google Scholar
  66. McGowan, S., D. B. Ryves, and N.J. Anderson. 2003. Holocene records of effective precipitation in West Greenland. Holocene 13: 239–249.CrossRefGoogle Scholar
  67. Naiman, R. J., R. E. Bilby, D. E. Schindler, and J. M. Helfield. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5: 399–417.CrossRefGoogle Scholar
  68. Oldfield, F., P. R. J. Crooks, D. D. Harkness, and G. Petterson. 1997. AMS radiocarbon dating of organic fractions from varved lake sediments: an empirical test of reliability. Journal of Paleolimnology 18: 87–91.CrossRefGoogle Scholar
  69. O'Sullivan, P. E. 2004. Palaeolimnology. In The lakes handbook: Limnology and limentic ecology, Volume 1, eds. P. E. O'Sullivan and C. S. Reynolds. Oxford: Blackwell Publishing.Google Scholar
  70. Patoine, A., M. D. Graham, and P. R. Leavitt, P. R. 2006. Spatial variation of nitrogen fixation in lakes of the northern Great Plains. Limnology and Oceanography 51: 1665–1677.CrossRefGoogle Scholar
  71. Patoine, A. and P. R. Leavitt. 2006. Century-long synchrony of algal fossil pigments in a chain of Canadian prairie lakes. Ecology 87: 1710–1721.CrossRefPubMedGoogle Scholar
  72. Pham, S. V., P. R. Leavitt, S. McGowan, and P. Peres-Neto. 2008. Spatial variability of climate and land-use effects on lakes of the northern Great Plains. Limnology and Oceanography 53: 728–742.CrossRefGoogle Scholar
  73. Philibert, A., Y. T. Prairie, and C. Carcaillet. 2003. 1200 years of fire impact on biogeochemistry as inferred from high resolution diatom analysis in a kettle lake from the Picea mariana-moss domain (Quebec, Canada). Journal of Paleolimnology 30: 167–181.CrossRefGoogle Scholar
  74. Quinlan, R., P. R. Leavitt, A. S. Dixit, R. I. Hall, and J. P. Smol. 2002. Landscape effects of climate, agriculture, and urbanization on benthic invertebrate communities of Canadian prairie lakes. Limnology and Oceanography 47: 378–391.CrossRefGoogle Scholar
  75. Racca, J. M. J., R. Racca, R. Pienitz, and Y. T. Prairie. 2007. PaleoNet: new software for building, evaluating and applying neural network based transfer functions in paleoecology. Journal of Paleolimnology 38: 467–472.CrossRefGoogle Scholar
  76. Racca, J. M. J., I. Gregory-Eaves, R. Pienitz, and Y. T. Prairie. 2004. Tailoring palaeolimnological diatom-based transfer functions. Canadian Journal of Fisheries and Aquatic Sciences 61: 2440–2454.CrossRefGoogle Scholar
  77. Racca, J. M. J., M. Wild, H. J. B. Birks, and Y. T. Prairie. 2003. Separating wheat from chaff: Diatom taxon selection using an artificial neural network pruning algorithm. Journal of Paleolimnology 29: 123–133.CrossRefGoogle Scholar
  78. Ruckelshaus, M. H., P. Levin, J. B. Johnson, and P. M. Kareiva. 2002. The Pacific salmon wars: What science brings to the challenge of recovering species. Annnual Review of Ecology and Systematics 33: 665–706.CrossRefGoogle Scholar
  79. Ryves, D. B., S. McGowan, and N.J. Anderson. 2002. Development and evaluation of a diatom-conductivity model from lakes in West Greenland. Freshwater Biology 47: 995–1014.CrossRefGoogle Scholar
  80. Savage, C., P. R. Leavitt, and R. Elmgren. 2004. Distribution and retention of effluent nitrogen in surface sediments of a coastal bay. Limnology and Oceanography 49: 1503–1511.CrossRefGoogle Scholar
  81. Schindler, D. E., P. R. Leavitt, S. P. Johnson, and C. S. Brock. 2006. A 500-year context for the recent surge in sockeye salmon (Oncorhynchus nerka) abundance in the Alagnak River, Alaska. Canadian Journal of Fisheries and Aquatic Sciences 63: 1439–1444.CrossRefGoogle Scholar
  82. Schindler, D. E., P. R. Leavitt, C. S. Brock, S.P Johnson, and P. D. Quay. 2005. Marine-derived nutrients, commercial fisheries, and production of salmon and lake algae in Alaska. Ecology 86: 3225–3231.CrossRefGoogle Scholar
  83. Schindler, D. W. 2006. Recent advances in the management and understanding of eutrophication. Limnology and Oceanography 51: 356–363.CrossRefGoogle Scholar
  84. Scully, N. M., P. R. Leavitt, and S. R. Carpenter. 2000. Century-long effects of forest harvest on the physical structure and autotrophic community of a small temperate lake. Canadian Journal of Fisheries and Aquatic Sciences 57: 50–59.CrossRefGoogle Scholar
  85. Smith, D. W., E. E. Prepas, G. Putz, J. M. Burke, W. L. Meyer, and I. Whitson. 2003. The Forest Watershed and Riparian Disturbance study: a multi-discipline initiative to evaluate and manage watershed disturbance on the Boreal Plain of Canada. Journal of Environmental and Engineering Science 2: S1–S13 Suppl. 1.CrossRefGoogle Scholar
  86. Smol, J. P. 2002. Pollution of lakes. A paleoenvironmental perspective. London: Arnold.Google Scholar
  87. Smol, J. P., and B. F. Cumming. 2000. Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology 36: 986–1011.CrossRefGoogle Scholar
  88. Soranno, P. A., K. E. Webster, J. L. Riera, T. K. Kratz, J. S. Baron, P. A. Bukaveckas, G. W. Kling, D. S. White, N. Caine, R. C. Lathrop, and P. R. Leavitt. 1999. Spatial variation among lakes within landscapes: Ecological organization along lake chains. Ecosystems 2: 395–410.CrossRefGoogle Scholar
  89. Steffy, L. Y., and S. S. Kilham. 2004. Elevated δ15N in stream biota in areas with septic tank systems in an urban watershed. Ecological Applications 14: 637–641.CrossRefGoogle Scholar
  90. Stewart-Oaten, A. and W. W. Murdoch. 1986. Environmental impact assessment: “Pseudoreplication in time?”. Ecology 67: 929–940.CrossRefGoogle Scholar
  91. Stockner, J. G. 2003. Nutrients in salmonid ecosystems: Sustaining production and biodiversity. American Fisheries Society Symposium 34.Google Scholar
  92. Stone, J. R., and S. C. Fritz. 2006. Three-dimensional modeling of lacustrine diatom habitat areas: Improving paleolimnological interpretation of planktic: benthic ratios. Limnology and Oceaongraphy 49: 1540–1548.CrossRefGoogle Scholar
  93. Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. S. Hughen, B. Kromer, G. McCormac, J. Van der Plicht, and M. Spurk. 1998. INTCAL98 Radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40: 1041–1083.Google Scholar
  94. Telford, R. J., and H. J. B. Birks. 2005. The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance. Quaternary Science Reviews 24: 2173–2179.CrossRefGoogle Scholar
  95. Telford, R. J., C. Andersson, H. J. B. Birks, and S. Juggins. 2004. Biases in the estimation of transfer function prediction errors. Paleoceanography 19: Art. No. PA4014.Google Scholar
  96. ter Braak, C. J. F., and P. Smilauer. 1998. CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Ordination (version 4). Ithaca: Microcomputer Power.Google Scholar
  97. Torrence, C., and G. P. Compo. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79: 61–78.CrossRefGoogle Scholar
  98. Verleyen, E., D. A. Hodgson, P. R. Leavitt, K. Sabbe, and W. Vyverman. 2004. Quantifying habitat-specific diatom production: A critical assessment using morphological and biogeochemical markers in Antarctic marine and lake sediments. Limnology and Oceanography 49: 1528–1539.CrossRefGoogle Scholar
  99. Wayland, M., and K. A. Hobson. 2001. Stable carbon, nitrogen, and sulfur isotope ratios in riparian food webs on rivers receiving sewage and pulp-mill effluents. Canadian Journal of Zoology 79: 5–15.CrossRefGoogle Scholar
  100. Willis, K. J., and H. J. B. Birks. 2006. What is natural? The need for a long-term perspective in biodiversity conservation. Science. 314: 1261–1265.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Geography, University of NottinghamUniversity ParkUK
  2. 2.Department of BiologyUniversity of ReginaReginaCanada

Personalised recommendations