Skip to main content

Integrating Multiple Spatial Controls and Temporal Sampling Schemes To Explore Short- and Long-Term Ecosystem Response to Fire in an Everglades Wetland

  • Chapter
Real World Ecology

Abstract

Ecosystem and landscape studies are often faced with less than ideal, large-scale scenarios which are challenged by traditional approaches to experimental design and analysis, primarily because these studies can not be adequately replicated and are confronted by multiple spatial and temporal scales of variation. Variations in parameter and response time further complicate experimental design and data analysis. Rather than struggle with controlling or minimizing the influence of spatial and temporal variation via statistically required replication, we employed BACI and BACIPS designs and applied multiple spatial-scale controls and unbalanced temporal sampling schemes to account for the spatial and temporal structure of the studied system. This multiple-scale design allowed us to assess both pulsed and sustained responses of critical ecosystem processes to a prescribed fire in a nutrient-enriched wetland. A series of regression approaches and confidence intervals were employed to estimate onset, duration, and magnitude of post-fire ecosystem responses. This chapter describes a powerful approach for studying ecosystem disturbance including issue identification, experimental design, data analysis and interpretation, and management recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bender, E. A., T. J. Case, and M. E. Gilpin. 1984. Perturbation experiments in community ecology: theory and practice. Ecology 65:1–13.

    Article  Google Scholar 

  • Box, G. E. P. and G. C. Tiao. 1965. A change in level of a nonstationary time series. Biometrika 52:181–192.

    Google Scholar 

  • Box, G. E. P. and G. C. Tiao. 1975. Intervention analysis with applications to economic and environmental problems. Journal of the American Statistical Association 70:70–79.

    Article  Google Scholar 

  • Burns and McDonnell. 2003. Everglades Protection Area Tributary Basins Long-Term Plan for Achieving Water Quality Goals. South Florida Water Management District, West Palm Beach, FL.

    Google Scholar 

  • Carpenter, S., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, and V. H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8:559–568.

    Article  Google Scholar 

  • Carpenter, S. R. 1990. Large-scale perturbations: Opportunities for innovation. Ecology 71:2038–2043.

    Article  Google Scholar 

  • Carpenter, S. R. 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677.

    Article  Google Scholar 

  • Carpenter, S. R., S. W. Chisholm, C. J. Krebs, D. W. Schindler, and R. F. Wright. 1995. Ecosystem experiments. Science 269:324–327.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, S. R., T. M. Frost, D. Heisey, and T. K. Kratz. 1989. Randomized intervention analysis and the interpretation of whole-ecosystem experiments. Ecology 70:1142–1152.

    Article  Google Scholar 

  • Chimney, M. J. and G. Goforth. 2001. Environmental impacts to the Everglades ecosystem: a historical perspective and restoration strategies. Water Science and Technology 44:93–100.

    CAS  PubMed  Google Scholar 

  • Clark, J. S., S. R. Carpenter, M. Barber, S. Collins, A. Dobson, J. A. Foley, D. M. Lodge, M. Pascual, R. Pielke Jr., W. Pizer, C. Pringle, W. V. Reid, K. A. Rose, O. Sala, W. H. Schlesinger, D. H. Wall, and D. Wear. 2001. Ecological forecasts: an emerging imperative. Science 293:657–660.

    Article  CAS  PubMed  Google Scholar 

  • Conquest, L. L. 2000. Analysis and interpretation of ecological field data using BACI designs: discussion. Journal of Agricultural, Biological and Environmental Statistics 5:293–296.

    Article  Google Scholar 

  • Davis, S. M. and J. C. Ogden. 1994. Toward ecosystem restoration. Pages 769–796 in S. M. Davis and J. C. Ogden, editors. Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, Florida, USA.

    Google Scholar 

  • Gotelli, N. J. and A. M. Ellison. 2004. A Primer of Ecological Statistics. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Green, R. H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. John Wiley & Sons, University of Western Ontario.

    Google Scholar 

  • Hasler, A. D., O. M. Brynildson, W. T. Helm. 1951. Improving conditions for fish in brown-water bog lakes by alkalization. Journal of Wildlife Management 15:347–352.

    Article  Google Scholar 

  • Hewitt, J. E., S. E. Thrush, and V. J. Cummings. 2001. Assessing environmental impacts: effects of spatial and temporal variability at likely impact scales. Ecological Applications 11:1502–1516.

    Article  Google Scholar 

  • Hewitt, J. E., S. F. Thrush, P. K. Dayton, and E. Bonsdorff. 2007. The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale-dependent systems. The American Naturalist 169:398–408.

    Article  Google Scholar 

  • Keough, J. M. and G. P. Quinn. 2000. Legislative vs. practical protection of an intertidal shoreline in Southeastern Australia. Ecological Applications 10:871–881.

    Article  Google Scholar 

  • Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673.

    Article  Google Scholar 

  • Legendre, P., M. R. T. Dale, M.-J. Fortin, J. Gurevitch, M. Hohn, and D. Meyers. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601–615.

    Article  Google Scholar 

  • Likens, G. E. 1985. An experimental approach for the study of ecosystems: The Fifth Tansley Lecture. Journal of Ecology 73:381–396.

    Article  Google Scholar 

  • Melbourne, B. A. and P. Chesson. 2005. Scaling up population dynamics: integrating theory and data. Oecologia 145:179–187.

    Article  PubMed  Google Scholar 

  • Miao, S. and S. Carstenn. 2006. A new direction for large-scale experimental design and analysis. Frontiers in Ecology 4:227.

    Article  Google Scholar 

  • Miao, S. L. and S. Carstenn. 2005. Assessing Long-Term Ecological Effects of Fire and Natural Recovery in a Phosphorus Enriched Everglades wetlands: Cattail Expansion Phosphorus Biogeochemistry and Native Vegetation Recovery. West Palm Beach, Florida.

    Google Scholar 

  • Mitsch, W. J. and J. W. Day Jr. 2004. Thinking big with whole-ecosystem studies and ecosystem restoration- a legacy of H.T. Odum. Ecological Modeling 178:133–155.

    Article  Google Scholar 

  • Murtaugh, P. A. 2007. Simplicity and complexity in ecological data analysis. Ecology 88:56–62.

    Article  PubMed  Google Scholar 

  • Osenberg, C. W. and R. J. Schmitt, editors. 1996. Detecting Ecological Impacts Caused by Human Activities. Academic Press, Inc., San Diego, CA.

    Google Scholar 

  • Osenberg, C. W., R. J. Schmitt, S. J. Holbrook, K. E. Abu-Saba, and A. R. Flegal. 1994. Detection of environmental impacts: natural variability, effect size, and power analysis. Ecological Applications 4:16–30.

    Article  Google Scholar 

  • Petersen, J. E., W. M. Kemp, R. Bartleson, W. R. Boynton, C.-C. Chen, J. C. Cornwell, R. H. Gardner, D. C. Hinkle, E. D. Houde, T. C. Malone, W. P. Mowitt, L. Murray, L. P. Sanford, J. C. Stevenson, K. L. Sunderburg, and S. E. Suttles. 2003. Multiscale experiments in coastal ecology: improving realism and advancing theory. BioScience 53:1181–1197.

    Article  Google Scholar 

  • Pickett, S. T. A. 1989. Space-for-time substitution as an alternative to long-term studies. Pages 110–135 in G. E. Likens, editor. Long-term studies in ecology. Springer-Verlag, New York.

    Google Scholar 

  • Ponzio, K. J., S. J. Miller, and M. A. Lee. 2004. Long-term effects of prescribed fire on Cladium jamaicense crantz and Typha domingensis pers. densities. Wetlands Ecology and Management 12:123–133.

    Article  Google Scholar 

  • Schindler, D. W. 1998. Replication versus realism: The need for ecosystem-scale experiments. Ecosystems 1:323–334.

    Article  Google Scholar 

  • Simberloff, D. 2004. A rising tide of species and literature: a review of some recent books on biological invasions. BioScience 54:247–254.

    Article  Google Scholar 

  • Sindhøj, E. and S. Miao. Submitted. Recovery dynamics and underlying mechanisms of Typha domingensis communities following fire in a highly- and moderately-nutrient enriched Everglades wetland Ecosystem Restoration.

    Google Scholar 

  • Sokal, R., R. and F. J. Rohlf. 1981. Biometry. 2nd edition. W.H. Freeman and Company, New York.

    Google Scholar 

  • Stewart-Oaten, A. 1996a. Goals in environmental monitoring. Pages 17–27 in R. J. Schmitt and C. W. Osenberg, editors. Detecting Ecological Impacts: Concepts and Applications in Coastal Habitats. Academic Press, Inc.

    Google Scholar 

  • Stewart-Oaten, A. 1996b. Problems in the analysis of environmental monitoring data. Pages 109–131 in R. J. Schmitt and C. W. Osenberg, editors. Detecting Ecological Impacts: Concepts and Applications in Coastal Habitats. Academic Press, San Diego.

    Google Scholar 

  • Stewart-Oaten, A. 1996c. Problems in the analysis of environmental monitoring data. Pages 109–131 in R. J. Schmitt and C. W. Osenberg, editors. Detecting Ecological Impacts: Concepts and Applications in Coastal Habitats. Academic Press, Inc.

    Google Scholar 

  • Stewart-Oaten, A. 2003. Using Before-After-Control Impact in Environmental Assessment: Purpose, Theoretical Basis, and Practical Problems. Coastal Research Center, Marine Science Institute, University of California, Santa Barbara, California.

    Google Scholar 

  • Thrush, S. F., J. E. Hewitt, V. J. Cummings, P. K. Dayton, M. Cryer, S. J. Turner, G. Funnell, R. Budd, C. Milburn, and M. R. Wilkinson. 1998. Disturbance of the marine benthic habitat by commercial fishing: impacts at the scale of the fishery. Ecological Applications 8:866–879.

    Article  Google Scholar 

  • Thrush, S. F., S. M. Lawrie, J. E. Hewitt, and V. J. Cummings. 1999. The problem of scale: uncertainties and implications for soft-bottom marine communities and the assessment of human impacts. Pages 185–210 in J. S. Gray, editor. Biogeochemical Cycling and Sediment Ecology. Kluwer Academic, Netherlands.

    Google Scholar 

  • Underwood, A. J. 1989. The analysis of stress in natural populations. Biological Journal of the Linnean Society 37:51–78.

    Article  Google Scholar 

  • Underwood, A. J. 1991. Beyond BACI: experimental designs for detecting human environmental impacts of temporal variations in natural populations. Australian Journal of Freshwater Research 42:569–587.

    Article  Google Scholar 

  • Underwood, A. J. 1993. The Mechanics of Spatially replicated sampling programs to detect environmental impacts in a variable world. Australian Journal of Ecology 18:99–116.

    Article  Google Scholar 

  • Underwood, A. J. 1994. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecological Applications 4:3–15.

    Article  Google Scholar 

  • Urquhart, N. S., S. G. Paulsen, and D. P. Larsen. 1998. Monitoring for policy-relevant regional trends over time. Ecological Applications 8:246–257.

    Google Scholar 

Download references

Acknowledgments

We thank the South Florida Water Management District for supporting the Fire project and Hawaii Pacific University for providing release time for S. Carstenn. We greatly appreciate many former (D. Pisut, H. Chen, J. Creasser, D. Salembier, M. Tapia, and D.Condo) and current members (Robert Johnson, Christina Stylianos, D. Monette) of the Fire project team who conducted field samplings. We thank C. Stow, D. Hui, J. Hewitt, J. Grace, S. Hill, M. Nungesser and D. Drum for their valuable comments on early drafts of the chapter. S.L. Miao contributed to overall idea, structure, and preparation of the manuscript; S.Carstenn contributed to analysis of moving regression and manuscript preparation; C. Thomas conducted BACI-ANOVA analyses related to control similarity and control numbers for detecting fire impacts; C. Edelstein was responsible for field setup and sampling, data management and figure and table creation; E. Sindhøj developed the model for nutrient pool analysis used in the synthesis section and contributed to manuscript preparation; and Binhe Gu contributed to the development of the nutrient pool analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiLi Miao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miao, S., Carstenn, S., Thomas, C., Edelstein, C., Sindhøj, E., Gu, B. (2009). Integrating Multiple Spatial Controls and Temporal Sampling Schemes To Explore Short- and Long-Term Ecosystem Response to Fire in an Everglades Wetland. In: Miao, S., Carstenn, S., Nungesser, M. (eds) Real World Ecology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77942-3_4

Download citation

Publish with us

Policies and ethics