Advertisement

CD4+Foxp3+Regulatory T Cells in Immune Tolerance

  • Ciriaco A. Piccirillo
Chapter

Abstract

Peripheral regulatory T cell networks suppress immune responses in various inflammatory contexts and ultimately assure peripheral tolerance. Naturally-occurring CD4+ Treg cells (nTreg) represent a major lymphocyte population maintaining dominant self-tolerance and controlling a variety of pathological immune responses. These nTreg cells specifically express Foxp3, a transcription factor that plays a critical role in their development and function. Functional abrogation of Foxp3-expressing nTreg cells in vivo, or genetic defects that affect their development or function, unequivocally predisposes animals and humans to the onset of multi-organ autoimmune and inflammatory diseases. CD4+ nTreg cells differentiate in the thymus as a functionally distinct subset of T cells, although their post-thymic differentiation can occur from conventional T cells. These cells bear a broad T cell receptor repertoire endowing these cells with the capacity to recognize a wide spectrum of self and non-self Ag specificities. These nTreg cells are dependent on IL-2 for their fitness in the periphery. In addition, deficiency or functional alteration of other surface molecules expressed on immune cells, may affect the development/function of nTreg cells, and consequently favor the onset of autoimmunity. Recent studies have shed light in our understanding of the cellular and molecular basis of CD4+ nTreg cell–mediated active maintenance of self-tolerance immune regulation, and will facilitate both our understanding of the pathogenetic mechanism of autoimmune disease and the development of novel methods of autoimmune disease prevention and treatment via enhancing and re-establishing Treg-mediated dominant control over autoreactive T cells. In this chapter, we discuss the contribution of CD4+ nTreg cells in the induction of immunologic self-tolerance in animal models and humans.

Keywords

Experimental Autoimmune Encephalomyelitis Treg Cell Foxp3 Expression Thymic Stromal Cell iTreg Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I would like to thank the core members of my team: Alexander Albanese, Evridiki Sgouroudis, Michal Pyzik, Michael Tritt, Ekaterina Yurchenko, Eva d’Hennezel, Jessica St-Pierre and Valerie Hay for endless discussions and hard work. I acknowledge the financial support of the Canadian Institutes for Health Research, Canadian Diabetes Association, and Canada Research Chair program.

References

  1. 1.
    Abbas, A.K., J. Lohr, B. Knoechel, and V. Nagabhushanam. 2004. T cell tolerance and autoimmunity. Autoimmun Rev 3:471–475.PubMedCrossRefGoogle Scholar
  2. 2.
    Piccirillo, C.A., and A.M. Thornton. 2004. Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells. Trends Immunol 25:374–380.PubMedCrossRefGoogle Scholar
  3. 3.
    Powrie, F. 2004. Immune regulation in the intestine: A Balancing act between effector and regulatory T cell responses. Ann NY Acad Sci 1029:132–141.PubMedCrossRefGoogle Scholar
  4. 4.
    Gershon, R.K., and K. Kondo. 1970. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18:723–737.PubMedGoogle Scholar
  5. 5.
    Gershon, R.K., and K. Kondo. 1971. Infectious immunological tolerance. Immunology 21:903–914.PubMedGoogle Scholar
  6. 6.
    Levings, M.K., and M.G. Roncarolo. 2005. Phenotypic and functional differences between human CD4+CD25+ and type 1 regulatory T cells. Curr Top Microbiol Immunol 293: 303–326.PubMedCrossRefGoogle Scholar
  7. 7.
    O'Garra, A., and F.J. Barrat. 2003. In vitro generation of IL-10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by Th1- and Th2-inducing cytokines. Immunol Lett 85:135–139.PubMedCrossRefGoogle Scholar
  8. 8.
    Roncarolo, M.G., S. Gregori, M. Battaglia, R. Bacchetta, K. Fleischhauer, and M.K. Levings. 2006. IL-10 secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50.Google Scholar
  9. 9.
    Sakaguchi, S. 2004. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562.PubMedCrossRefGoogle Scholar
  10. 10.
    Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, and M. Toda. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164.PubMedGoogle Scholar
  11. 11.
    Thornton, A.M., and E.M. Shevach. 1998. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296.PubMedCrossRefGoogle Scholar
  12. 12.
    Baecher-Allan, C., J.A. Brown, G.J. Freeman, and D.A. Hafler. 2001. CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167:1245–1253.PubMedGoogle Scholar
  13. 13.
    Baecher-Allan, C., J.A. Brown, G.J. Freeman, and D.A. Hafler. 2003. CD4+CD25+ regulatory cells from human peripheral blood express very high levels of CD25 ex vivo. Novartis Found Symp 252:67–88; discussion 88–91, 106–114.PubMedCrossRefGoogle Scholar
  14. 14.
    Levings, M.K., R. Sangregorio, and M.G. Roncarolo. 2001. Human CD25+CD4+ T regulatory cells suppress naive and memory T-cell proliferation and can be expanded in vitro without loss of function. J Exp Med 193:1295–1302.Google Scholar
  15. 15.
    Levings, M.K., R. Sangregorio, C. Sartirana, A.L. Moschin, M. Battaglia, P.C. Orban, and M.G. Roncarolo. 2002. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 196:1335–1346.Google Scholar
  16. 16.
    Sakaguchi, S. 2005. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen, W., W. Jin, N. Hardegen, K.J. Lei, L. Li, N. Marinos, G. McGrady, and S.M. Wahl. 2003. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886.PubMedCrossRefGoogle Scholar
  18. 18.
    Bach, J.F. 2003. Regulatory T cells under scrutiny. Nat Rev Immunol 3:189–198.PubMedCrossRefGoogle Scholar
  19. 19.
    Shevach, E.M. 2002. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400.PubMedGoogle Scholar
  20. 20.
    Piccirillo, C.A., and E.M. Shevach. 2004. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol 16:81–88.PubMedCrossRefGoogle Scholar
  21. 21.
    Rudensky, A. 2005. Foxp3 and dominant tolerance. Philos Trans R Soc Lond B Biol Sci 360:1645–1646.PubMedCrossRefGoogle Scholar
  22. 22.
    Levings, M.K., S. Allan, E. d'Hennezel, and C.A. Piccirillo. 2006. Functional dynamics of naturally occurring regulatory T cells in health and autoimmunity. Adv Immunol 92:119–155.PubMedCrossRefGoogle Scholar
  23. 23.
    Asano, M., M. Toda, N. Sakaguchi, and S. Sakaguchi. 1996. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184: 387–396.PubMedCrossRefGoogle Scholar
  24. 24.
    Sakaguchi, S. 2002. Immunologic tolerance maintained by regulatory T cells: implications for autoimmunity, tumor immunity and transplantation tolerance. Vox Sang 83 Suppl 1: 151–153.PubMedCrossRefGoogle Scholar
  25. 25.
    Sakaguchi, S., M. Ono, R. Setoguchi, H. Yagi, S. Hori, Z. Fehervari, J. Shimizu, T. Takahashi, and T. Nomura. 2006. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27.PubMedCrossRefGoogle Scholar
  26. 26.
    Hsieh, C.S., and A.Y. Rudensky. 2005. The role of TCR specificity in naturally arising CD25+ CD4+ regulatory T cell biology. Curr Top Microbiol Immunol 293:25–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Hsieh, C.S., Y. Zheng, Y. Liang, J.D. Fontenot, and A.Y. Rudensky. 2006. An intersection between the autoreactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 7:401–410.PubMedCrossRefGoogle Scholar
  28. 28.
    Cederbom, L., H. Hall, and F. Ivars. 2000. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 30:1538–1543.PubMedCrossRefGoogle Scholar
  29. 29.
    Hunig, T., and A. Schimpl. 1997. Systemic autoimmune disease as a consequence of defective lymphocyte death. Curr Opin Immunol 9:826–830.PubMedCrossRefGoogle Scholar
  30. 30.
    Piccirillo, C.A., and E.M. Shevach. 2001. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 167:1137–1140.PubMedGoogle Scholar
  31. 31.
    Seo, S.J., M.L. Fields, J.L. Buckler, A.J. Reed, L. Mandik-Nayak, S.A. Nish, R.J. Noelle, L.A. Turka, F.D. Finkelman, A.J. Caton, and J. Erikson. 2002. The impact of T helper and T regulatory cells on the regulation of anti-double-stranded DNA B cells. Immunity 16: 535–546.PubMedCrossRefGoogle Scholar
  32. 32.
    Trzonkowski, P., E. Szmit, J. Mysliwska, A. Dobyszuk, and A. Mysliwski. 2004. CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin Immunol 112:258–267.PubMedCrossRefGoogle Scholar
  33. 33.
    Azuma, T., T. Takahashi, A. Kunisato, T. Kitamura, and H. Hirai. 2003. Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 63:4516–4520.PubMedGoogle Scholar
  34. 34.
    Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336.PubMedCrossRefGoogle Scholar
  35. 35.
    Hori, S., and S. Sakaguchi. 2004. Foxp3: a critical regulator of the development and function of regulatory T cells. Microbes Infect 6:745–751.PubMedCrossRefGoogle Scholar
  36. 36.
    Khattri, R., T. Cox, S.A. Yasayko, and F. Ramsdell. 2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342.PubMedCrossRefGoogle Scholar
  37. 37.
    Gavin, M.A., J.P. Rasmussen, J.D. Fontenot, V. Vasta, V.C. Manganiello, J.A. Beavo, and A.Y. Rudensky. 2007. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445:771–775.Google Scholar
  38. 38.
    Williams, L.M., and A.Y. Rudensky. 2007. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 8:277–284.Google Scholar
  39. 39.
    Kim, J.M., and A. Rudensky. 2006. The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol Rev 212:86–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Fontenot, J.D., J.P. Rasmussen, L.M. Williams, J.L. Dooley, A.G. Farr, and A.Y. Rudensky. 2005. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim, J.M., J.P. Rasmussen, and A.Y. Rudensky. 2007. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8:191–197.PubMedCrossRefGoogle Scholar
  42. 42.
    Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061.PubMedCrossRefGoogle Scholar
  43. 43.
    Jaeckel, E., H. von Boehmer, and M.P. Manns. 2005. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes 54:306–310.PubMedCrossRefGoogle Scholar
  44. 44.
    Ochs, H.D., S.F. Ziegler, and T.R. Torgerson. 2005. FOXP3 acts as a rheostat of the immune response. Immunol Rev 203:156–164.PubMedCrossRefGoogle Scholar
  45. 45.
    Bennett, C.L., J. Christie, F. Ramsdell, M.E. Brunkow, P.J. Ferguson, L. Whitesell, T.E. Kelly, F.T. Saulsbury, P.F. Chance, and H.D. Ochs. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Gambineri, E., T.R. Torgerson, and H.D. Ochs. 2003. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 15:430–435.PubMedCrossRefGoogle Scholar
  47. 47.
    Owen, C.J., C.E. Jennings, H. Imrie, A. Lachaux, N.A. Bridges, T.D. Cheetham, and S.H. Pearce. 2003. Mutational analysis of the FOXP3 gene and evidence for genetic heterogeneity in the immunodysregulation, polyendocrinopathy, enteropathy syndrome. J Clin Endocrinol Metab 88:6034–6039.PubMedCrossRefGoogle Scholar
  48. 48.
    Tommasini, A., S. Ferrari, D. Moratto, R. Badolato, M. Boniotto, D. Pirulli, L.D. Notarangelo, and M. Andolina. 2002. X-chromosome inactivation analysis in a female carrier of FOXP3 mutation. Clin Exp Immunol 130:127–130.PubMedCrossRefGoogle Scholar
  49. 49.
    Wildin, R.S., S. Smyk-Pearson, and A.H. Filipovich. 2002. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 39:537–545.PubMedCrossRefGoogle Scholar
  50. 50.
    Smyk-Pearson, S.K., A.C. Bakke, P.K. Held, and R.S. Wildin. 2003. Rescue of the autoimmune scurfy mouse by partial bone marrow transplantation or by injection with T-enriched splenocytes. Clin Exp Immunol 133:193–199.PubMedCrossRefGoogle Scholar
  51. 51.
    Chang, X., J.X. Gao, Q. Jiang, J. Wen, N. Seifers, L. Su, V.L. Godfrey, T. Zuo, P. Zheng, and Y. Liu. 2005. The Scurfy mutation of FoxP3 in the thymus stroma leads to defective thymopoiesis. J Exp Med 202:1141–1151.PubMedCrossRefGoogle Scholar
  52. 52.
    Allan, S.E., L. Passerini, R. Bacchetta, N. Crellin, M. Dai, P.C. Orban, S.F. Ziegler, M.G. Roncarolo, and M.K. Levings. 2005. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest 115:3276–3284.PubMedCrossRefGoogle Scholar
  53. 53.
    Yagi, H., T. Nomura, K. Nakamura, S. Yamazaki, T. Kitawaki, S. Hori, M. Maeda, M. Onodera, T. Uchiyama, S. Fujii, and S. Sakaguchi. 2004. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 16:1643–1656.PubMedCrossRefGoogle Scholar
  54. 54.
    Ziegler, S.F. 2006. FOXP3: Of Mice and Men. Annu Rev Immunol 24:209–226.PubMedCrossRefGoogle Scholar
  55. 55.
    Schubert, L.A., E. Jeffery, Y. Zhang, F. Ramsdell, and S.F. Ziegler. 2001. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 276: 37672–37679.PubMedCrossRefGoogle Scholar
  56. 56.
    Zheng, Y., S.Z. Josefowicz, A. Kas, T.T. Chu, M.A. Gavin, and A.Y. Rudensky. 2007. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445:936–940.Google Scholar
  57. 57.
    Rudensky, A.Y., M. Gavin, and Y. Zheng. 2006. FOXP3 and NFAT: partners in tolerance. Cell 126:253–256.PubMedCrossRefGoogle Scholar
  58. 58.
    Bettelli, E., M. Dastrange, and M. Oukka. 2005. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA 102:5138–5143.PubMedCrossRefGoogle Scholar
  59. 59.
    Ono, M., J. Shimizu, Y. Miyachi, and S. Sakaguchi. 2006. Control of autoimmune myocarditis and multiorgan inflammation by glucocorticoid-induced TNF receptor family-related protein(high), Foxp3-expressing CD25+ and CD25- regulatory T cells. J Immunol 176: 4748–4756.PubMedGoogle Scholar
  60. 60.
    Sakaguchi, S. 2003. The origin of FOXP3-expressing CD4+ regulatory T cells: thymus or periphery. J Clin Invest 112:1310–1312.PubMedGoogle Scholar
  61. 61.
    Malek, T.R., and A.L. Bayer. 2004. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4:665–674.PubMedCrossRefGoogle Scholar
  62. 62.
    Nelson, B.H. 2004. IL-2, regulatory T cells, and tolerance. J Immunol 172:3983–3988.PubMedGoogle Scholar
  63. 63.
    Vella, A., J.D. Cooper, C.E. Lowe, N. Walker, S. Nutland, B. Widmer, R. Jones, S.M. Ring, W. McArdle, M.E. Pembrey, D.P. Strachan, D.B. Dunger, R.C. Twells, D.G. Clayton, and J.A. Todd. 2005. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet 76:773–779.PubMedCrossRefGoogle Scholar
  64. 64.
    Malek, T.R., A. Yu, V. Vincek, P. Scibelli, and L. Kong. 2002. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17:167–178.PubMedCrossRefGoogle Scholar
  65. 65.
    Bayer, A.L., A. Yu, D. Adeegbe, and T.R. Malek. 2005. Essential role for interleukin-2 for CD4(+)CD25(+) T regulatory cell development during the neonatal period. J Exp Med 201:769–777.PubMedCrossRefGoogle Scholar
  66. 66.
    Wolf, M., A. Schimpl, and T. Hunig. 2001. Control of T cell hyperactivation in IL-2-deficient mice by CD4(+)CD25(–) and CD4(+)CD25(+) T cells: evidence for two distinct regulatory mechanisms. Eur J Immunol 31:1637–1645.PubMedCrossRefGoogle Scholar
  67. 67.
    Furtado, G.C., D. Olivares-Villagomez, M.A. Curotto de Lafaille, A.K. Wensky, J.A. Latkowski, and J.J. Lafaille. 2001. Regulatory T cells in spontaneous autoimmune encephalomyelitis. Immunol Rev 182:122–134.PubMedCrossRefGoogle Scholar
  68. 68.
    Setoguchi, R., S. Hori, T. Takahashi, and S. Sakaguchi. 2005. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201:723–735.PubMedCrossRefGoogle Scholar
  69. 69.
    Fontenot, J.D., J.P. Rasmussen, M.A. Gavin, and A.Y. Rudensky. 2005. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142–1151.PubMedCrossRefGoogle Scholar
  70. 70.
    Antov, A., L. Yang, M. Vig, D. Baltimore, and L. Van Parijs. 2003. Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol 171:3435–3441.PubMedGoogle Scholar
  71. 71.
    D'Cruz, L.M., and L. Klein. 2005. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6:1152–1159.PubMedCrossRefGoogle Scholar
  72. 72.
    Gavin, M., and A. Rudensky. 2003. Control of immune homeostasis by naturally arising regulatory CD4+ T cells. Curr Opin Immunol 15:690–696.PubMedCrossRefGoogle Scholar
  73. 73.
    Toda, A., and C.A. Piccirillo. 2006. Development and function of naturally occurring CD4+CD25+ regulatory T cells. J Leukoc Biol 80:458–470.PubMedCrossRefGoogle Scholar
  74. 74.
    Salomon, B., and J.A. Bluestone. 2001. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19:225–252.PubMedCrossRefGoogle Scholar
  75. 75.
    Salomon, B., D.J. Lenschow, L. Rhee, N. Ashourian, B. Singh, A. Sharpe, and J.A. Bluestone. 2000. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440.PubMedCrossRefGoogle Scholar
  76. 76.
    Tang, Q., K.J. Henriksen, E.K. Boden, A.J. Tooley, J. Ye, S.K. Subudhi, X.X. Zheng, T.B. Strom, and J.A. Bluestone. 2003. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 171:3348–3352.PubMedGoogle Scholar
  77. 77.
    Guiducci, C., B. Valzasina, H. Dislich, and M.P. Colombo. 2005. CD40/CD40L interaction regulates CD4(+)CD25(+) T reg homeostasis through dendritic cell-produced IL-2. Eur J Immunol 35:557–567.Google Scholar
  78. 78.
    Kumanogoh, A., X. Wang, I. Lee, C. Watanabe, M. Kamanaka, W. Shi, K. Yoshida, T. Sato, S. Habu, M. Itoh, N. Sakaguchi, S. Sakaguchi, and H. Kikutani. 2001. Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions: a role of CD40 in regulatory T cell development. J Immunol 166:353–360.PubMedGoogle Scholar
  79. 79.
    Tai, X., M. Cowan, L. Feigenbaum, and A. Singer. 2005. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6:152–162.PubMedCrossRefGoogle Scholar
  80. 80.
    Fehervari, Z., and S. Sakaguchi. 2004. Control of Foxp3+ CD25+CD4+ regulatory cell activation and function by dendritic cells. Int Immunol 16:1769–1780.PubMedCrossRefGoogle Scholar
  81. 81.
    Yamazaki, S., T. Iyoda, K. Tarbell, K. Olson, K. Velinzon, K. Inaba, and R.M. Steinman. 2003. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 198:235–247.PubMedCrossRefGoogle Scholar
  82. 82.
    Tarbell, K.V., S. Yamazaki, and R.M. Steinman. 2006. The interactions of dendritic cells with antigen-specific, regulatory T cells that suppress autoimmunity. Semin Immunol 18: 93–102.PubMedCrossRefGoogle Scholar
  83. 83.
    Encinas, J.A., L.S. Wicker, L.B. Peterson, A. Mukasa, C. Teuscher, R. Sobel, H.L. Weiner, C.E. Seidman, J.G. Seidman, and V.K. Kuchroo. 1999. QTL influencing autoimmune diabetes and encephalomyelitis map to a 0.15-cM region containing Il2. Nat Genet 21:158–160.PubMedCrossRefGoogle Scholar
  84. 84.
    Maier, L.M., and L.S. Wicker. 2005. Genetic susceptibility to type 1 diabetes. Curr Opin Immunol 17:601–608.PubMedCrossRefGoogle Scholar
  85. 85.
    Podolin, P.L., M.B. Wilusz, R.M. Cubbon, U. Pajvani, C.J. Lord, J.A. Todd, L.B. Peterson, L.S. Wicker, and P.A. Lyons. 2000. Differential glycosylation of interleukin 2, the molecular basis for the NOD Idd3 type 1 diabetes gene? Cytokine 12:477–482.PubMedCrossRefGoogle Scholar
  86. 86.
    Snow, J.W., N. Abraham, M.C. Ma, B.G. Herndier, A.W. Pastuszak, and M.A. Goldsmith. 2003. Loss of tolerance and autoimmunity affecting multiple organs in STAT5A/5B-deficient mice. J Immunol 171:5042–5050.PubMedGoogle Scholar
  87. 87.
    Nacsa, J., Y. Edghill-Smith, W.P. Tsai, D. Venzon, E. Tryniszewska, A. Hryniewicz, M. Moniuszko, A. Kinter, K.A. Smith, and G. Franchini. 2005. Contrasting Effects of Low-Dose IL-2 on Vaccine-Boosted Simian Immunodeficiency Virus (SIV)-Specific CD4+ and CD8+ T Cells in Macaques Chronically Infected with SIVmac251. J Immunol 174: 1913–1921.PubMedGoogle Scholar
  88. 88.
    Bluestone, J.A., and Q. Tang. 2004. Therapeutic vaccination using CD4+CD25+ antigen-specific regulatory T cells. Proc Natl Acad Sci USA 101 Suppl 2:14622–14626.PubMedCrossRefGoogle Scholar
  89. 89.
    Tang, Q., K.J. Henriksen, M. Bi, E.B. Finger, G. Szot, J. Ye, E.L. Masteller, H. McDevitt, M. Bonyhadi, and J.A. Bluestone. 2004. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199:1455–1465.PubMedCrossRefGoogle Scholar
  90. 90.
    Greenwald, R.J., G.J. Freeman, and A.H. Sharpe. 2004. The B7 Family Revisited. Annu Rev Immunol 23:515–548.Google Scholar
  91. 91.
    Read, S., R. Greenwald, A. Izcue, N. Robinson, D. Mandelbrot, L. Francisco, A.H. Sharpe, and F. Powrie. 2006. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol 177:4376–4383.PubMedGoogle Scholar
  92. 92.
    Bachmann, M.F., G. Kohler, B. Ecabert, T.W. Mak, and M. Kopf. 1999. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 163:1128–1131.PubMedGoogle Scholar
  93. 93.
    Takahashi, T., T. Tagami, S. Yamazaki, T. Uede, J. Shimizu, N. Sakaguchi, T.W. Mak, and S. Sakaguchi. 2000. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310.PubMedCrossRefGoogle Scholar
  94. 94.
    Rao, P.E., A.L. Petrone, and P.D. Ponath. 2005. Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-{beta}. J Immunol 174:1446–1455.PubMedGoogle Scholar
  95. 95.
    Thornton, A.M., C.A. Piccirillo, and E.M. Shevach. 2004. Activation requirements for the induction of CD4+CD25+ T cell suppressor function. Eur J Immunol 34:366–376.PubMedCrossRefGoogle Scholar
  96. 96.
    Fallarino, F., U. Grohmann, K.W. Hwang, C. Orabona, C. Vacca, R. Bianchi, M.L. Belladonna, M.C. Fioretti, M.L. Alegre, and P. Puccetti. 2003. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212.PubMedCrossRefGoogle Scholar
  97. 97.
    Tang, Q., E.K. Boden, K.J. Henriksen, H. Bour-Jordan, M. Bi, and J.A. Bluestone. 2004. Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. Eur J Immunol 34:2996–3005.PubMedCrossRefGoogle Scholar
  98. 98.
    Paust, S., L. Lu, N. McCarty, and H. Cantor. 2004. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 101:10398–10403.PubMedCrossRefGoogle Scholar
  99. 99.
    Boden, E., Q. Tang, H. Bour-Jordan, and J.A. Bluestone. 2003. The role of CD28 and CTLA4 in the function and homeostasis of CD4+CD25+ regulatory T cells. Novartis Found Symp 252:55–63; discussion 63–56, 106–114.PubMedCrossRefGoogle Scholar
  100. 100.
    Solomon, M., and N. Sarvetnick. 2004. The pathogenesis of diabetes in the NOD mouse. Adv Immunol 84:239–264.PubMedCrossRefGoogle Scholar
  101. 101.
    Ueda, H., J.M. Howson, L. Esposito, J. Heward, H. Snook, G. Chamberlain, D.B. Rainbow, K.M. Hunter, A.N. Smith, G. Di Genova, M.H. Herr, I. Dahlman, F. Payne, D. Smyth, C. Lowe, R.C. Twells, S. Howlett, B. Healy, S. Nutland, H.E. Rance, V. Everett, L.J. Smink, A.C. Lam, H.J. Cordell, N.M. Walker, C. Bordin, J. Hulme, C. Motzo, F. Cucca, J.F. Hess, M.L. Metzker, J. Rogers, S. Gregory, A. Allahabadia, R. Nithiyananthan, E. Tuomilehto-Wolf, J. Tuomilehto, P. Bingley, K.M. Gillespie, D.E. Undlien, K.S. Ronningen, C. Guja, C. Ionescu-Tirgoviste, D.A. Savage, A.P. Maxwell, D.J. Carson, C.C. Patterson, J.A. Franklyn, D.G. Clayton, L.B. Peterson, L.S. Wicker, J.A. Todd, and S.C. Gough. 2003. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511.PubMedCrossRefGoogle Scholar
  102. 102.
    Kulkarni, A.B., C.G. Huh, D. Becker, A. Geiser, M. Lyght, K.C. Flanders, A.B. Roberts, M.B. Sporn, J.M. Ward, and S. Karlsson. 1993. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90:770–774.PubMedCrossRefGoogle Scholar
  103. 103.
    Lucas, P.J., S.J. Kim, S.J. Melby, and R.E. Gress. 2000. Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor beta II receptor. J Exp Med 191:1187–1196.PubMedCrossRefGoogle Scholar
  104. 104.
    Yang, X., J.J. Letterio, R.J. Lechleider, L. Chen, R. Hayman, H. Gu, A.B. Roberts, and C. Deng. 1999. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. Embo J 18:1280–1291.PubMedCrossRefGoogle Scholar
  105. 105.
    Ashcroft, G.S., X. Yang, A.B. Glick, M. Weinstein, J.L. Letterio, D.E. Mizel, M. Anzano, T. Greenwell-Wild, S.M. Wahl, C. Deng, and A.B. Roberts. 1999. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1:260–266.PubMedCrossRefGoogle Scholar
  106. 106.
    Datto, M.B., J.P. Frederick, L. Pan, A.J. Borton, Y. Zhuang, and X.F. Wang. 1999. Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 19:2495–2504.PubMedGoogle Scholar
  107. 107.
    Marie, J.C., D. Liggitt, and A.Y. Rudensky. 2006. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25:441–454.PubMedCrossRefGoogle Scholar
  108. 108.
    Blois, S., M. Tometten, J. Kandil, E. Hagen, B.F. Klapp, R.A. Margni, and P.C. Arck. 2005. Intercellular adhesion molecule-1/LFA-1 cross talk is a proximate mediator capable of disrupting immune integration and tolerance mechanism at the feto-maternal interface in murine pregnancies. J Immunol 174:1820–1829.PubMedGoogle Scholar
  109. 109.
    Nakamura, K., A. Kitani, and W. Strober. 2001. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629–644.PubMedCrossRefGoogle Scholar
  110. 110.
    Shevach, E.M., C.A. Piccirillo, A.M. Thornton, and R.S. McHugh. 2003. Control of T cell activation by CD4+CD25+ suppressor T cells. Novartis Found Symp 252:24–36; discussion 36–44, 106–114.PubMedCrossRefGoogle Scholar
  111. 111.
    Piccirillo, C.A., J.J. Letterio, A.M. Thornton, R.S. McHugh, M. Mamura, H. Mizuhara, and E.M. Shevach. 2002. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237–246.PubMedCrossRefGoogle Scholar
  112. 112.
    Kullberg, M.C., V. Hay, A.W. Cheever, M. Mamura, A. Sher, J.J. Letterio, E.M. Shevach, and C.A. Piccirillo. 2005. TGF-beta1 production by CD4+ CD25+ regulatory T cells is not essential for suppression of intestinal inflammation. Eur J Immunol 35:2886–2895.PubMedCrossRefGoogle Scholar
  113. 113.
    Mamura, M., W. Lee, T.J. Sullivan, A. Felici, A.L. Sowers, J.P. Allison, and J.J. Letterio. 2004. CD28 disruption exacerbates inflammation in Tgf-beta1-/- mice: in vivo suppression by CD4+CD25+ regulatory T cells independent of autocrine TGF-beta1. Blood 103: 4594–4601.PubMedCrossRefGoogle Scholar
  114. 114.
    Read, S., V. Malmstrom, and F. Powrie. 2000. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192:295–302.PubMedCrossRefGoogle Scholar
  115. 115.
    Chen, M.L., M.J. Pittet, L. Gorelik, R.A. Flavell, R. Weissleder, H. von Boehmer, and K. Khazaie. 2005. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA 102: 419–424.PubMedCrossRefGoogle Scholar
  116. 116.
    Nakamura, K., A. Kitani, I. Fuss, A. Pedersen, N. Harada, H. Nawata, and W. Strober. 2004. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 172:834–842.PubMedGoogle Scholar
  117. 117.
    Oida, T., X. Zhang, M. Goto, S. Hachimura, M. Totsuka, S. Kaminogawa, and H.L. Weiner. 2003. CD4+CD25- T cells that express latency-associated peptide on the surface suppress CD4+CD45RBhigh-induced colitis by a TGF-beta-dependent mechanism. J Immunol 170:2516–2522.PubMedGoogle Scholar
  118. 118.
    Green, E.A., L. Gorelik, C.M. McGregor, E.H. Tran, and R.A. Flavell. 2003. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc Natl Acad Sci USA 100:10878–10883.PubMedCrossRefGoogle Scholar
  119. 119.
    Huber, S., C. Schramm, H.A. Lehr, A. Mann, S. Schmitt, C. Becker, M. Protschka, P.R. Galle, M.F. Neurath, and M. Blessing. 2004. Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol 173:6526–6531.PubMedGoogle Scholar
  120. 120.
    Peng, Y., Y. Laouar, M.O. Li, E.A. Green, and R.A. Flavell. 2004. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA 101:4572–4577.PubMedCrossRefGoogle Scholar
  121. 121.
    Yamagiwa, S., J.D. Gray, S. Hashimoto, and D.A. Horwitz. 2001. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol 166:7282–7289.PubMedGoogle Scholar
  122. 122.
    Marie, J.C., J.J. Letterio, M. Gavin, and A.Y. Rudensky. 2005. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 201: 1061–1067.PubMedCrossRefGoogle Scholar
  123. 123.
    Suri-Payer, E., and H. Cantor. 2001. Differential cytokine requirements for regulation of autoimmune gastritis and colitis by CD4(+)CD25(+) T cells. J Autoimmun 16:115–123.PubMedCrossRefGoogle Scholar
  124. 124.
    Morse, S.S., N. Sakaguchi, and S. Sakaguchi. 1999. Virus and autoimmunity: induction of autoimmune disease in mice by mouse T lymphotropic virus (MTLV) destroying CD4+ T cells. J Immunol 162:5309–5316.PubMedGoogle Scholar
  125. 125.
    Barrett, S.P., B.H. Toh, F. Alderuccio, I.R. van Driel, and P.A. Gleeson. 1995. Organ-specific autoimmunity induced by adult thymectomy and cyclophosphamide-induced lymphopenia. Eur J Immunol 25:238–244.PubMedCrossRefGoogle Scholar
  126. 126.
    Sakaguchi, S., and N. Sakaguchi. 1989. Organ-specific autoimmune disease induced in mice by elimination of T cell subsets. V. Neonatal administration of cyclosporin A causes autoimmune disease. J Immunol 142:471–480.PubMedGoogle Scholar
  127. 127.
    Anderson, M.S., E.S. Venanzi, Z. Chen, S.P. Berzins, C. Benoist, and D. Mathis. 2005. The cellular mechanism of Aire control of T cell tolerance. Immunity 23:227–239.PubMedCrossRefGoogle Scholar
  128. 128.
    Gorelik, L., and R.A. Flavell. 2000. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–181.PubMedCrossRefGoogle Scholar
  129. 129.
    Schimpl, A., I. Berberich, B. Kneitz, S. Kramer, B. Santner-Nanan, S. Wagner, M. Wolf, and T. Hunig. 2002. IL-2 and autoimmune disease. Cytokine Growth Factor Rev 13:369–378.PubMedCrossRefGoogle Scholar
  130. 130.
    Girvin, A.M., M.C. Dal Canto, L. Rhee, B. Salomon, A. Sharpe, J.A. Bluestone, and S.D. Miller. 2000. A critical role for B7/CD28 costimulation in experimental autoimmune encephalomyelitis: a comparative study using costimulatory molecule-deficient mice and monoclonal antibody blockade. J Immunol 164:136–143.Google Scholar
  131. 131.
    Sakaguchi, S., M. Toda, M. Asano, M. Itoh, S.S. Morse, and N. Sakaguchi. 1996. T cell-mediated maintenance of natural self-tolerance: its breakdown as a possible cause of various autoimmune diseases. J Autoimmun 9:211–220.PubMedCrossRefGoogle Scholar
  132. 132.
    Alyanakian, M.A., S. You, D. Damotte, C. Gouarin, A. Esling, C. Garcia, S. Havouis, L. Chatenoud, and J.F. Bach. 2003. Diversity of regulatory CD4+T cells controlling distinct organ-specific autoimmune diseases. Proc Natl Acad Sci USA 100:15806–15811.PubMedCrossRefGoogle Scholar
  133. 133.
    McHugh, R.S., and E.M. Shevach. 2002. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J Immunol 168:5979–5983.PubMedGoogle Scholar
  134. 134.
    Sakaguchi, N., T. Takahashi, H. Hata, T. Nomura, T. Tagami, S. Yamazaki, T. Sakihama, T. Matsutani, I. Negishi, S. Nakatsuru, and S. Sakaguchi. 2003. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426: 454–460.PubMedCrossRefGoogle Scholar
  135. 135.
    Anderson, M.S., E.S. Venanzi, L. Klein, Z. Chen, S.P. Berzins, S.J. Turley, H. von Boehmer, R. Bronson, A. Dierich, C. Benoist, and D. Mathis. 2002. Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401.PubMedCrossRefGoogle Scholar
  136. 136.
    Ramsey, C., O. Winqvist, L. Puhakka, M. Halonen, A. Moro, O. Kampe, P. Eskelin, M. Pelto-Huikko, and L. Peltonen. 2002. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet 11:397–409.PubMedCrossRefGoogle Scholar
  137. 137.
    Akiyama, T., S. Maeda, S. Yamane, K. Ogino, M. Kasai, F. Kajiura, M. Matsumoto, and J. Inoue. 2005. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308:248–251.PubMedCrossRefGoogle Scholar
  138. 138.
    Kajiura, F., S. Sun, T. Nomura, K. Izumi, T. Ueno, Y. Bando, N. Kuroda, H. Han, Y. Li, A. Matsushima, Y. Takahama, S. Sakaguchi, T. Mitani, and M. Matsumoto. 2004. NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol 172:2067–2075.PubMedGoogle Scholar
  139. 139.
    Wohlfert, E.A., M.K. Callahan, and R.B. Clark. 2004. Resistance to CD4+CD25+ regulatory T cells and TGF-beta in Cbl-b-/- mice. J Immunol 173:1059–1065.PubMedGoogle Scholar
  140. 140.
    Bopp, T., A. Palmetshofer, E. Serfling, V. Heib, S. Schmitt, C. Richter, M. Klein, H. Schild, E. Schmitt, and M. Stassen. 2005. NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. J Exp Med 201:181–187.PubMedCrossRefGoogle Scholar
  141. 141.
    Pasare, C., and R. Medzhitov. 2003. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036.PubMedCrossRefGoogle Scholar
  142. 142.
    Piccirillo, C.A., M. Tritt, E. Sgouroudis, A. Albanese, M. Pyzik, and V. Hay. 2005. Control of Type 1 Autoimmune Diabetes by Naturally Occurring CD4+CD25+ Regulatory T Lymphocytes in Neonatal NOD Mice. Ann NY Acad Sci 1051:72–87.PubMedCrossRefGoogle Scholar
  143. 143.
    Pop, S.M., C.P. Wong, D.A. Culton, S.H. Clarke, and R. Tisch. 2005. Single cell analysis shows decreasing FoxP3 and TGFbeta1 coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes. J Exp Med 201:1333–1346.PubMedCrossRefGoogle Scholar
  144. 144.
    Gregg, R.K., R. Jain, S.J. Schoenleber, R. Divekar, J.J. Bell, H.H. Lee, P. Yu, and H. Zaghouani. 2004. A sudden decline in active membrane-bound TGF-beta impairs both T regulatory cell function and protection against autoimmune diabetes. J Immunol 173: 7308–7316.PubMedGoogle Scholar
  145. 145.
    Gregori, S., N. Giarratana, S. Smiroldo, and L. Adorini. 2003. Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol 171:4040–4047.PubMedGoogle Scholar
  146. 146.
    Miyara, M., Z. Amoura, C. Parizot, C. Badoual, K. Dorgham, S. Trad, D. Nochy, P. Debre, J.C. Piette, and G. Gorochov. 2005. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol 175:8392–8400.PubMedGoogle Scholar
  147. 147.
    Viglietta, V., C. Baecher-Allan, H.L. Weiner, and D.A. Hafler. 2004. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979.PubMedCrossRefGoogle Scholar
  148. 148.
    Tang, Q., J.Y. Adams, A.J. Tooley, M. Bi, B.T. Fife, P. Serra, P. Santamaria, R.M. Locksley, M.F. Krummel, and J.A. Bluestone. 2006. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7:83–92.PubMedCrossRefGoogle Scholar
  149. 149.
    Tarbell, K.V., S. Yamazaki, K. Olson, P. Toy, and R.M. Steinman. 2004. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199:1467–1477.PubMedCrossRefGoogle Scholar
  150. 150.
    Chen, Z., A.E. Herman, M. Matos, D. Mathis, and C. Benoist. 2005. Where CD4+CD25+ T reg cells impinge on autoimmune diabetes. J Exp Med 202:1387–1397.PubMedCrossRefGoogle Scholar
  151. 151.
    You, S., M. Belghith, S. Cobbold, M.A. Alyanakian, C. Gouarin, S. Barriot, C. Garcia, H. Waldmann, J.F. Bach, and L. Chatenoud. 2005. Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes 54:1415–1422.PubMedCrossRefGoogle Scholar
  152. 152.
    Bour-Jordan, H., B.L. Salomon, H.L. Thompson, G.L. Szot, M.R. Bernhard, and J.A. Bluestone. 2004. Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J Clin Invest 114:979–987.PubMedGoogle Scholar
  153. 153.
    Serra, P., A. Amrani, J. Yamanouchi, B. Han, S. Thiessen, T. Utsugi, J. Verdaguer, and P. Santamaria. 2003. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 19:877–889.PubMedCrossRefGoogle Scholar
  154. 154.
    Herman, A.E., G.J. Freeman, D. Mathis, and C. Benoist. 2004. CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J Exp Med 199:1479–1489.PubMedCrossRefGoogle Scholar
  155. 155.
    Balasa, B., and N. Sarvetnick. 1998. Cytokines and IDDM: Implications for etiology and therapy. Drug News Perspect 11:356–360.PubMedCrossRefGoogle Scholar
  156. 156.
    Chen, Z., C. Benoist, and D. Mathis. 2005. How defects in central tolerance impinge on a deficiency in regulatory T cells. Proc Natl Acad Sci USA 102:14735–14740.PubMedCrossRefGoogle Scholar
  157. 157.
    Wicker, L.S., J. Clark, H.I. Fraser, V.E. Garner, A. Gonzalez-Munoz, B. Healy, S. Howlett, K. Hunter, D. Rainbow, R.L. Rosa, L.J. Smink, J.A. Todd, and L.B. Peterson. 2005. Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 25 Suppl: 29–33.PubMedCrossRefGoogle Scholar
  158. 158.
    Greve, B., L. Vijayakrishnan, A. Kubal, R.A. Sobel, L.B. Peterson, L.S. Wicker, and V.K. Kuchroo. 2004. The diabetes susceptibility locus Idd5.1 on mouse chromosome 1 regulates ICOS expression and modulates murine experimental autoimmune encephalomyelitis. J Immunol 173:157–163.PubMedGoogle Scholar
  159. 159.
    Hill, N.J., P.A. Lyons, N. Armitage, J.A. Todd, L.S. Wicker, and L.B. Peterson. 2000. NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans. Diabetes 49:1744–1747.PubMedCrossRefGoogle Scholar
  160. 160.
    Lyons, P.A., W.W. Hancock, P. Denny, C.J. Lord, N.J. Hill, N. Armitage, T. Siegmund, J.A. Todd, M.S. Phillips, J.F. Hess, S.L. Chen, P.A. Fischer, L.B. Peterson, and L.S. Wicker. 2000. The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular variants of Cd30, Tnfr2, and Cd137. Immunity 13:107–115.PubMedCrossRefGoogle Scholar
  161. 161.
    Wicker, L.S., J.A. Todd, J.B. Prins, P.L. Podolin, R.J. Renjilian, and L.B. Peterson. 1994. Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes. J Exp Med 180:1705–1713.PubMedCrossRefGoogle Scholar
  162. 162.
    Denny, P., C.J. Lord, N.J. Hill, J.V. Goy, E.R. Levy, P.L. Podolin, L.B. Peterson, L.S. Wicker, J.A. Todd, and P.A. Lyons. 1997. Mapping of the IDDM locus Idd3 to a 0.35-cM interval containing the interleukin-2 gene. Diabetes 46:695–700.PubMedCrossRefGoogle Scholar
  163. 163.
    Lyons, P.A., N. Armitage, F. Argentina, P. Denny, N.J. Hill, C.J. Lord, M.B. Wilusz, L.B. Peterson, L.S. Wicker, and J.A. Todd. 2000. Congenic mapping of the type 1 diabetes locus, Idd3, to a 780-kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping. Genome Res 10:446–453.PubMedCrossRefGoogle Scholar
  164. 164.
    Wicker, L.S., C.L. Moule, H. Fraser, C. Penha-Goncalves, D. Rainbow, V.E. Garner, G. Chamberlain, K. Hunter, S. Howlett, J. Clark, A. Gonzalez-Munoz, A.M. Cumiskey, P. Tiffen, J. Howson, B. Healy, L.J. Smink, A. Kingsnorth, P.A. Lyons, S. Gregory, J. Rogers, J.A. Todd, and L.B. Peterson. 2005. Natural genetic variants influencing type 1 diabetes in humans and in the NOD mouse. Novartis Found Symp 267:57–65; discussion 65–75.PubMedCrossRefGoogle Scholar
  165. 165.
    Bottini, N., L. Musumeci, A. Alonso, S. Rahmouni, K. Nika, M. Rostamkhani, J. MacMurray, G.F. Meloni, P. Lucarelli, M. Pellecchia, G.S. Eisenbarth, D. Comings, and T. Mustelin. 2004. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36:337–338.PubMedCrossRefGoogle Scholar
  166. 166.
    Bottini, N., T. Vang, F. Cucca, and T. Mustelin. 2006. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 18:207–213.PubMedCrossRefGoogle Scholar
  167. 167.
    Steck, A.K., S.Y. Liu, K. McFann, K.J. Barriga, S.R. Babu, G.S. Eisenbarth, M.J. Rewers, and J.X. She. 2006. Association of the PTPN22/LYP gene with type 1 diabetes. Pediatr Diabetes 7:274–278.PubMedCrossRefGoogle Scholar
  168. 168.
    Vang, T., M. Congia, M.D. Macis, L. Musumeci, V. Orru, P. Zavattari, K. Nika, L. Tautz, K. Tasken, F. Cucca, T. Mustelin, and N. Bottini. 2005. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37:1317–1319.PubMedCrossRefGoogle Scholar
  169. 169.
    Bacchetta, R., L. Passerini, E. Gambineri, M. Dai, S.E. Allan, L. Perroni, F. Dagna-Bricarelli, C. Sartirana, S. Matthew, A. Lawitschka, C. Azzari, S.F. Ziegler, M.K. Levings, and M.G. Roncarolo. 2006. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest 116:1713–1722.Google Scholar
  170. 170.
    Lee, J.H., L.C. Wang, Y.T. Lin, Y.H. Yang, D.T. Lin, and B.L. Chiang. 2006. Inverse correlation between CD4+ regulatory T-cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology 117:280–286.PubMedCrossRefGoogle Scholar
  171. 171.
    Liu, M.F., C.R. Wang, L.L. Fung, and C.R. Wu. 2004. Decreased CD4+CD25+ T cells in peripheral blood of patients with systemic lupus erythematosus. Scand J Immunol 59: 198–202.PubMedCrossRefGoogle Scholar
  172. 172.
    Haas, J., A. Hug, A. Viehover, B. Fritzsching, C.S. Falk, A. Filser, T. Vetter, L. Milkova, M. Korporal, B. Fritz, B. Storch-Hagenlocher, P.H. Krammer, E. Suri-Payer, and B. Wildemann. 2005. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 35:3343–3352.PubMedCrossRefGoogle Scholar
  173. 173.
    Balandina, A., S. Lecart, P. Dartevelle, A. Saoudi, and S. Berrih-Aknin. 2005. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 105:735–741.PubMedCrossRefGoogle Scholar
  174. 174.
    Sugiyama, H., R. Gyulai, E. Toichi, E. Garaczi, S. Shimada, S.R. Stevens, T.S. McCormick, and K.D. Cooper. 2005. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 174:164–173.PubMedGoogle Scholar
  175. 175.
    Lindley, S., C.M. Dayan, A. Bishop, B.O. Roep, M. Peakman, and T.I. Tree. 2005. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54:92–99.PubMedCrossRefGoogle Scholar
  176. 176.
    Kriegel, M.A., T. Lohmann, C. Gabler, N. Blank, J.R. Kalden, and H.M. Lorenz. 2004. Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J Exp Med 199:1285–1291.PubMedCrossRefGoogle Scholar
  177. 177.
    Cao, D., V. Malmstrom, C. Baecher-Allan, D. Hafler, L. Klareskog, and C. Trollmo. 2003. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol 33:215–223.PubMedCrossRefGoogle Scholar
  178. 178.
    de Kleer, I.M., L.R. Wedderburn, L.S. Taams, A. Patel, H. Varsani, M. Klein, W. de Jager, G. Pugayung, F. Giannoni, G. Rijkers, S. Albani, W. Kuis, and B. Prakken. 2004. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J Immunol 172:6435–6443.PubMedGoogle Scholar
  179. 179.
    Valencia, X., G. Stephens, R. Goldbach-Mansky, M. Wilson, E.M. Shevach, and P.E. Lipsky. 2006. TNF down-modulates the function of human CD4+CD25hi T regulatory cells. Blood 108:253–261.Google Scholar
  180. 180.
    Ehrenstein, M.R., J.G. Evans, A. Singh, S. Moore, G. Warnes, D.A. Isenberg, and C. Mauri. 2004. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 200:277–285.PubMedCrossRefGoogle Scholar
  181. 181.
    Rouse, B.T., and S. Suvas. 2004. Regulatory cells and infectious agents: detentes cordiale and contraire. J Immunol 173:2211–2215.PubMedGoogle Scholar
  182. 182.
    Belkaid, Y. 2003. The role of CD4(+)CD25(+) regulatory T cells in Leishmania infection. Expert Opin Biol Ther 3:875–885.PubMedCrossRefGoogle Scholar
  183. 183.
    Belkaid, Y., C.A. Piccirillo, S. Mendez, E.M. Shevach, and D.L. Sacks. 2002. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507.PubMedCrossRefGoogle Scholar
  184. 184.
    Suvas, S., A.K. Azkur, B.S. Kim, U. Kumaraguru, and B.T. Rouse. 2004. CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol 172:4123–4132.PubMedGoogle Scholar
  185. 185.
    Manigold, T., E.C. Shin, E. Mizukoshi, K. Mihalik, K.K. Murthy, C.M. Rice, C.A. Piccirillo, and B. Rehermann. 2006. Foxp3+CD4+CD25+ T cells control virus-specific memory T cells in chimpanzees that recovered from hepatitis C. Blood 107:4424–4432.PubMedCrossRefGoogle Scholar
  186. 186.
    Hesse, M., C.A. Piccirillo, Y. Belkaid, J. Prufer, M. Mentink-Kane, M. Leusink, A.W. Cheever, E.M. Shevach, and T.A. Wynn. 2004. The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J Immunol 172:3157–3166.PubMedGoogle Scholar
  187. 187.
    Suvas, S., U. Kumaraguru, C.D. Pack, S. Lee, and B.T. Rouse. 2003. CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 198: 889–901.PubMedCrossRefGoogle Scholar
  188. 188.
    Powrie, F., S. Read, C. Mottet, H. Uhlig, and K. Maloy. 2003. Control of immune pathology by regulatory T cells. Novartis Found Symp 252:92–98; discussion 98–105, 106–114.PubMedCrossRefGoogle Scholar
  189. 189.
    Singh, B., S. Read, C. Asseman, V. Malmstrom, C. Mottet, L.A. Stephens, R. Stepankova, H. Tlaskalova, and F. Powrie. 2001. Control of intestinal inflammation by regulatory T cells. Immunol Rev 182:190–200.PubMedCrossRefGoogle Scholar
  190. 190.
    Belkaid, Y., S. Mendez, R. Lira, N. Kadambi, G. Milon, and D. Sacks. 2000. A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165: 969–977.PubMedGoogle Scholar
  191. 191.
    Mendez, S., S.K. Reckling, C.A. Piccirillo, D. Sacks, and Y. Belkaid. 2004. Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med 200:201–210.PubMedCrossRefGoogle Scholar
  192. 192.
    Suffia, I.J., S.K. Reckling, C.A. Piccirillo, R.S. Goldszmid, and Y. Belkaid. 2006. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J Exp Med 203:777–788.PubMedCrossRefGoogle Scholar
  193. 193.
    Belkaid, Y., K.F. Hoffmann, S. Mendez, S. Kamhawi, M.C. Udey, T.A. Wynn, and D.L. Sacks. 2001. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194:1497–1506.PubMedCrossRefGoogle Scholar
  194. 194.
    Zlotnik, A., O. Yoshie, and H. Nomiyama. 2006. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7:243.PubMedCrossRefGoogle Scholar
  195. 195.
    D'Ambrosio, D., F. Sinigaglia, and L. Adorini. 2003. Special attractions for suppressor T cells. Trends Immunol 24:122–126.PubMedCrossRefGoogle Scholar
  196. 196.
    Iellem, A., M. Mariani, R. Lang, H. Recalde, P. Panina-Bordignon, F. Sinigaglia, and D. D'Ambrosio. 2001. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 194:847–853.PubMedCrossRefGoogle Scholar
  197. 197.
    Szanya, V., J. Ermann, C. Taylor, C. Holness, and C.G. Fathman. 2002. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J Immunol 169:2461–2465.PubMedGoogle Scholar
  198. 198.
    Kleinewietfeld, M., F. Puentes, G. Borsellino, L. Battistini, O. Rotzschke, and K. Falk. 2005. CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset. Blood 105:2877–2886.PubMedCrossRefGoogle Scholar
  199. 199.
    Bystry, R.S., V. Aluvihare, K.A. Welch, M. Kallikourdis, and A.G. Betz. 2001. B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2:1126–1132.PubMedCrossRefGoogle Scholar
  200. 200.
    Curiel, T.J., G. Coukos, L. Zou, X. Alvarez, P. Cheng, P. Mottram, M. Evdemon-Hogan, J.R. Conejo-Garcia, L. Zhang, M. Burow, Y. Zhu, S. Wei, I. Kryczek, B. Daniel, A. Gordon, L. Myers, A. Lackner, M.L. Disis, K.L. Knutson, L. Chen, and W. Zou. 2004. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949.PubMedCrossRefGoogle Scholar
  201. 201.
    Wysocki, C.A., Q. Jiang, A. Panoskaltsis-Mortari, P.A. Taylor, K.P. McKinnon, L. Su, B.R. Blazar, and J.S. Serody. 2005. Critical role for CCR5 in the function of donor CD4+ CD25+ regulatory T cells during acute graft-versus-host disease. Blood 106:3300–3307.PubMedCrossRefGoogle Scholar
  202. 202.
    Yurchenko, E., M. Tritt, V. Hay, E.M. Shevach, Y. Belkaid, and C.A. Piccirillo. 2006. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J Exp Med 203:2451–2460.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ciriaco A. Piccirillo
    • 1
  1. 1.Departments of Microbiology and ImmunologyMcGill Centre for the Study of Host Resistance,McGill University Health CenterMontrealCanada

Personalised recommendations