Molecular Signalling in T Regulatory Cells

  • Natasha R. Locke
  • Natasha K. Crellin
  • Megan K. Levings


T regulatory (Treg) cells contribute to immune homeostasis and maintain peripheral tolerance by actively inhibiting the expansion and function of conventional T cells. Their importance in controlling a wide range of immune responses, including autoimmune disease, cancer and transplantation tolerance is well established. Treg cells differ from T effector cells in many aspects, including their capacity to proliferate, produce cytokines, and express a unique complement of proteins. This unique phenotype suggests that Treg cells may have alterations in molecular signalling pathways. This review summarizes recent progress in defining the distinct intracellular signalling events in Treg cells that may underlie their phenotype and suppressive function. We focus on changes in events downstream of the T cell receptor and the IL-2 receptor, and discuss how costimulation events may contribute to altered signalling events. Much more research is required to better define the mechanistic basis for theses changes in Treg cells and to define their functional significance.


Treg Cell Suppressive Function CD28 Costimulation Suppressive Capacity Intracellular Signalling Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors' own work is supported by grants from the Canadian Institutes for Health Research (CIHR) (MOP57834 and MOP127506) and BC Transplant Society. MKL holds a Canada Research Chair in Transplantation and is a Michael Smith Foundation for Health Research (MSFHR) Scholar. NRL holds a CIHR/MSFHR Training program postdoctoral fellowship. NKC holds a MSFHR Senior Graduate Studentship award.


  1. 1.
    Roncarolo, M G; Gregori, S; Battaglia, M; Bacchetta, R; Fleischhauer, K; Levings, M K. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev, 2006 Aug, 212, 28–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Sakaguchi, S; Ono, M; Setoguchi, R; Yagi, H; Hori, S; Fehervari, Z; Shimizu, J; Takahashi, T; Nomura, T. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev, 2006 Aug, 212, 8–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Shevach, E M; DiPaolo, R A; Andersson, J; Zhao, D M; Stephens, G L; Thornton, A M. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev, 2006 Aug, 212, 60–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Ziegler, S F. FOXP3: of mice and men. Annu Rev Immunol, 2006, 24, 209–26.PubMedCrossRefGoogle Scholar
  5. 5.
    Fontenot, J D; Rudensky, A Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol, 2005 Apr, 6(4), 331–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Allan, S E; Crome, S Q; Crellin, N K; Passerini, L; Steiner, T S; Bacchetta, R; Roncarolo, M G; Levings, M K. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol, 2007 Apr, 19(4), 345–54.Google Scholar
  7. 7.
    Ziegler, S F. FOXP3: Not just for regulatory T cells anymore. Eur J Immunol, 2007 Jan, 37(1), 21–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang, J; Ioan-Facsinay, A; van der Voort, E I; Huizinga, T W; Toes, R E. Transient expression of FOXP3 in human activated nonregulatory CD4(+) T cells. Eur J Immunol, 2007 Jan, 37(1), 129–38.PubMedCrossRefGoogle Scholar
  9. 9.
    Levings, M K; Sangregorio, R; Sartirana, C; Moschin, A L; Battaglia, M; Orban, P C; Roncarolo, M G. Human CD25+CD4+ T suppressor cell clones produce TGF-b, but not IL-10 and are distinct from type 1 T regulatory cells. J Exp Med, 2002, 196, 1335–46.PubMedCrossRefGoogle Scholar
  10. 10.
    Levings, M K; Sangregorio, R; Roncarolo, M G. Human CD25+CD4+ T regulatory cells suppress naive and memory T-cell proliferation and can be expanded in vitro without loss of function. J Exp Med, 2001, 193, 1295–302.PubMedCrossRefGoogle Scholar
  11. 11.
    Oida, T; Zhang, X; Goto, M; Hachimura, S; Totsuka, M; Kaminogawa, S; Weiner, H L. CD4+CD25- T cells that express latency-associated peptide on the surface suppress CD4+CD45RBhigh-induced colitis by a TGF-beta-dependent mechanism. J Immunol, 2003 Mar 1, 170(5), 2516–22.PubMedGoogle Scholar
  12. 12.
    Gondek, D C; Lu, L F; Quezada, S A; Sakaguchi, S; Noelle, R J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol, 2005 Feb 15, 174(4), 1783–6.PubMedGoogle Scholar
  13. 13.
    Waldmann, H; Cobbold, S. Regulating the immune response to transplants: a role for CD4+ regulatory cells? Immunity, 2001, 14, 399–406.PubMedCrossRefGoogle Scholar
  14. 14.
    Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol, 2004, 22, 17–32.CrossRefGoogle Scholar
  15. 15.
    Shevach, E M. Regulatory T cells in autoimmmunity. Annu Rev Immunol, 2000, 18, 423–49.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu, H; Leung, B P. CD4+CD25+ regulatory T cells in health and disease. Clin Exp Pharmacol Physiol, 2006 May–Jun, 33(5–6), 519–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Fu, S; Zhang, N; Yopp, A C; Chen, D; Mao, M; Zhang, H; Ding, Y; Bromberg, J S. TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25 – precursors. Am J Transplant, 2004 Oct, 4(10), 1614–27.PubMedCrossRefGoogle Scholar
  18. 18.
    Faria, A M; Weiner, H L. Oral tolerance and TGF-beta-producing cells. Inflamm Allergy Drug Targets, 2006 Sep, 5(3), 179–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Rezvani, K; Mielke, S; Ahmadzadeh, M; Kilical, Y; Savani, B N; Zeilah, J; Keyvanfar, K; Montero, A; Hensel, N; Kurlander, R; Barrett, A J. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood, 2006 Aug 15, 108(4), 1291–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Filippi, C; Bresson, D; von Herrath, M. Antigen-specific induction of regulatory T cells for type 1 diabetes therapy. Int Rev Immunol, 2005 Sep–Dec, 24(5–6), 341–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Altman, A; Villalba, M. Protein kinase C-theta (PKCtheta): it's all about location, location, location. Immunol Rev, 2003 Apr, 192, 53–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Palacios, E H; Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene, 2004 Oct 18, 23(48), 7990–8000.PubMedCrossRefGoogle Scholar
  23. 23.
    Dustin, M L. A dynamic view of the immunological synapse. Semin Immunol, 2005 Dec, 17(6), 400–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Mittelstadt, P R; Salvador, J M; Fornace, A J, Jr.; Ashwell, J D. Activating p38 MAPK: new tricks for an old kinase. Cell Cycle, 2005 Sep, 4(9), 1189–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Kabouridis, P S. Lipid rafts in T cell receptor signalling. Mol Membr Biol, 2006 Jan–Feb, 23(1), 49–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Weil, R Israel, A. Deciphering the pathway from the TCR to NF-kappaB. Cell Death Differ, 2006 May, 13(5), 826–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Lafferty, K J. Cunningham, A J. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci, 1975 Feb, 53(1), 27–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Schwartz, R H. T cell anergy. Annu Rev Immunol, 2003, 21, 305–34.PubMedCrossRefGoogle Scholar
  29. 29.
    Chan, A C; Dalton, M; Johnson, R; Kong, G H; Wang, T; Thoma, R; Kurosaki, T. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. Embo J, 1995 Jun 1, 14(11), 2499–508.PubMedGoogle Scholar
  30. 30.
    Aguado, E; Martinez-Florensa, M; Aparicio, P. Activation of T lymphocytes and the role of the adapter LAT. Transpl Immunol, 2006 Dec, 17(1), 23–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Appleman, L J; Tzachanis, D; Grader-Beck, T; van Puijenbroek, A A; Boussiotis, V A. Helper T cell anergy: from biochemistry to cancer pathophysiology and therapeutics. J Mol Med, 2001, 78(12), 673–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Tsang, J Y; Camara, N O; Eren, E; Schneider, H; Rudd, C; Lombardi, G; Lechler, R. Altered proximal T cell receptor (TCR) signalling in human CD4+CD25+ regulatory T cells. J Leukoc Biol, 2006 Jul, 80(1), 145–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Hickman, S P; Yang, J; Thomas, R M; Wells, A D; Turka, L A. Defective activation of protein kinase C and Ras-ERK pathways limits IL-2 production and proliferation by CD4+CD25+ regulatory T cells. J Immunol, 2006 Aug 15, 177(4), 2186–94.PubMedGoogle Scholar
  34. 34.
    Koonpaew, S; Shen, S; Flowers, L; Zhang, W. LAT-mediated signalling in CD4+CD25+ regulatory T cell development. J Exp Med, 2006 Jan 23, 203(1), 119–29.PubMedCrossRefGoogle Scholar
  35. 35.
    Crellin, N K; Garcia, R V; Levings, M K. Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood, 2007 Mar 1, 109(5), 2014–22.Google Scholar
  36. 36.
    Li, L; Godfrey, W R; Porter, S B; Ge, Y; June, C H; Blazar, B R; Boussiotis, V A. CD4+CD25+ regulatory T-cell lines from human cord blood have functional and molecular properties of T-cell anergy. Blood, 2005 Nov 1, 106(9), 3068–73.PubMedCrossRefGoogle Scholar
  37. 37.
    Su, L; Creusot, R J; Gallo, E M; Chan, S M; Utz, P J; Fathman, C G; Ermann, J. Murine CD4+CD25+ regulatory T cells fail to undergo chromatin remodeling across the proximal promoter region of the IL-2 gene. J Immunol, 2004 Oct 15, 173(8), 4994–5001.PubMedGoogle Scholar
  38. 38.
    Gavin, M A; Clarke, S R; Negrou, E; Gallegos, A; Rudensky, A. Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat Immunol, 2002 Jan, 3(1), 33–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Macian, F; Garcia-Cozar, F; Im, S H; Horton, H F; Byrne, M C; Rao, A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell, 2002 Jun 14, 109(6), 719–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Harris, J E; Bishop, K D; Phillips, N E; Mordes, J P; Greiner, D L; Rossini, A A; Czech, M P. Early growth response gene-2, a zinc-finger transcription factor, is required for full induction of clonal anergy in CD4+ T cells. J Immunol, 2004 Dec 15, 173(12), 7331–8.PubMedGoogle Scholar
  41. 41.
    Anderson, P O; Manzo, B A; Sundstedt, A; Minaee, S; Symonds, A; Khalid, S; Rodriguez-Cabezas, M E; Nicolson, K; Li, S; Wraith, D C; Wang, P. Persistent antigenic stimulation alters the transcription program in T cells, resulting in antigen-specific tolerance. Eur J Immunol, 2006 Jun, 36(6), 1374–85.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu, Y; Borde, M; Heissmeyer, V; Feuerer, M; Lapan, A D; Stroud, J C; Bates, D L; Guo, L; Han, A; Ziegler, S F; Mathis, D; Benoist, C; Chen, L; Rao, A. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell, 2006 Jul 28, 126(2), 375–87.PubMedCrossRefGoogle Scholar
  43. 43.
    Bettelli, E; Dastrange, M; Oukka, M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA, 2005 Apr 5, 102(14), 5138–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Borlado, L R; Redondo, C; Alvarez, B; Jimenez, C; Criado, L M; Flores, J; Marcos, M A; Martinez, A C; Balomenos, D; Carrera, A C. Increased phosphoinositide 3-kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. Faseb J, 2000 May, 14(7), 895–903.PubMedGoogle Scholar
  45. 45.
    Parsons, M J; Jones, R G; Tsao, M S; Odermatt, B; Ohashi, P S; Woodgett, J R. Expression of active protein kinase B in T cells perturbs both T and B cell homeostasis and promotes inflammation. J Immunol, 2001 Jul 1, 167(1), 42–8.PubMedGoogle Scholar
  46. 46.
    Taub, D D; Murphy, W J; Asai, O; Fenton, R G; Peltz, G; Key, M L; Turcovski-Corrales, S; Longo, D L. Induction of alloantigen-specific T cell tolerance through the treatment of human T lymphocytes with wortmannin. J Immunol, 1997 Mar 15, 158(6), 2745–55.PubMedGoogle Scholar
  47. 47.
    Powell, J D; Lerner, C G; Schwartz, R H. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol, 1999 Mar 1, 162(5), 2775–84.PubMedGoogle Scholar
  48. 48.
    Battaglia, M; Stabilni, A; Roncarolo, M G. Rapamycin selectively expands CD4+CD25+FOXP3+ regulatory T cells. Blood, 2005 Jun 15, 105(12), 4743–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Valmori, D; Tosello, V; Souleimanian, N E; Godefroy, E; Scotto, L; Wang, Y; Ayyoub, M. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells. J Immunol, 2006 Jul 15, 177(2), 944–9.PubMedGoogle Scholar
  50. 50.
    Battaglia, M; Stabilini, A; Draghici, E; Gregori, S; Mocchetti, C; Bonifacio, E; Roncarolo, M G. Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance. Diabetes, 2006  Jan, 55(1), 40–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Bensinger, S J; Walsh, P T; Zhang, J; Carroll, M; Parsons, R; Rathmell, J C; Thompson, C B; Burchill, M A; Farrar, M A; Turka, L A. Distinct IL-2 receptor signalling pattern in CD4+CD25+ regulatory T cells. J Immunol, 2004 May 1, 172(9), 5287–96.PubMedGoogle Scholar
  52. 52.
    Meiffren, G; Flacher, M; Azocar, O; Rabourdin-Combe, C; Faure, M. Cutting edge: abortive proliferation of CD46-induced Tr1-like cells due to a defective Akt/Survivin signalling pathway. J Immunol, 2006 Oct 15, 177(8), 4957–61.Google Scholar
  53. 53.
    Cantley, L C; Neel, B G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA, 1999 Apr 13, 96(8), 4240–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Shiota, C; Woo, J T; Lindner, J; Shelton, K D; Magnuson, M A. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell, 2006 Oct, 11(4), 583–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Jacinto, E; Facchinetti, V; Liu, D; Soto, N; Wei, S; Jung, S Y; Huang, Q; Qin, J; Su, B. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell, 2006 Oct 6, 127(1), 125–37.PubMedCrossRefGoogle Scholar
  56. 56.
    Kohn, A D; Barthel, A; Kovacina, K S; Boge, A; Wallach, B; Summers, S A; Birnbaum, M J; Scott, P H; Lawrence, J C, Jr.; Roth, R A. Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J Biol Chem, 1998 May 8, 273(19), 11937–43.PubMedCrossRefGoogle Scholar
  57. 57.
    Patton, D T; Garden, O A; Pearce, W P; Clough, L E; Monk, C R; Leung, E; Rowan, W C; Sancho, S; Walker, L S; Vanhaesebroeck, B; Okkenhaug, K. Cutting edge: the phosphoinositide 3-Kinase p110{delta} is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J Immunol, 2006 Nov 15, 177(10), 6598–602.PubMedGoogle Scholar
  58. 58.
    Walsh, P T; Buckler, J L; Zhang, J; Gelman, A E; Dalton, N M; Taylor, D K; Bensinger, S J; Hancock, W W; Turka, L A. PTEN inhibits IL-2 receptor-mediated expansion of CD4+ CD25+ Tregs. J Clin Invest, 2006 Sep, 116(9), 2521–31.PubMedGoogle Scholar
  59. 59.
    Suzuki, A; Yamaguchi, M T; Ohteki, T; Sasaki, T; Kaisho, T; Kimura, Y; Yoshida, R; Wakeham, A; Higuchi, T; Fukumoto, M; Tsubata, T; Ohashi, P S; Koyasu, S; Penninger, J M; Nakano, T; Mak, T W. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity, 2001 May, 14(5), 523–34.PubMedCrossRefGoogle Scholar
  60. 60.
    Kashiwada, M; Cattoretti, G; McKeag, L; Rouse, T; Showalter, B M; Al-Alem, U; Niki, M; Pandolfi, P P; Field, E H; Rothman, P B. Downstream of tyrosine kinases-1 and Src homology 2-containing inositol 5'-phosphatase are required for regulation of CD4+CD25+ T cell development. J Immunol, 2006 Apr 1, 176(7), 3958–65.PubMedGoogle Scholar
  61. 61.
    Van Slyke, P; Coll, M L; Master, Z; Kim, H; Filmus, J; Dumont, D J. Dok-R mediates attenuation of epidermal growth factor-dependent mitogen-activated protein kinase and Akt activation through processive recruitment of c-Src and Csk. Mol Cell Biol, 2005 May, 25(9), 3831–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Yasuda, T; Shirakata, M; Iwama, A; Ishii, A; Ebihara, Y; Osawa, M; Honda, K; Shinohara, H; Sudo, K; Tsuji, K; Nakauchi, H; Iwakura, Y; Hirai, H; Oda, H; Yamamoto, T; Yamanashi, Y. Role of Dok-1 and Dok-2 in myeloid homeostasis and suppression of leukemia. J Exp Med, 2004 Dec 20, 200(12), 1681–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Niki, M; Di Cristofano, A; Zhao, M; Honda, H; Hirai, H; Van Aelst, L; Cordon-Cardo, C; Pandolfi, P P. Role of Dok-1 and Dok-2 in leukemia suppression. J Exp Med, 2004 Dec 20, 200(12), 1689–95.PubMedCrossRefGoogle Scholar
  64. 64.
    Dong, S; Corre, B; Foulon, E; Dufour, E; Veillette, A; Acuto, O; Michel, F. T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signalling complex involving Dok-2, SHIP-1, and Grb-2. J Exp Med, 2006 Oct 30, 203(11), 2509–18.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhao, M; Janas, J A; Niki, M; Pandolfi, P P; Van Aelst, L. Dok-1 independently attenuates Ras/mitogen-activated protein kinase and Src/c-myc pathways to inhibit platelet-derived growth factor-induced mitogenesis. Mol Cell Biol, 2006 Apr, 26(7), 2479–89.PubMedCrossRefGoogle Scholar
  66. 66.
    Okada, M; Nada, S; Yamanashi, Y; Yamamoto, T; Nakagawa, H. CSK: a protein-tyrosine kinase involved in regulation of src family kinases. J Biol Chem, 1991 Dec 25, 266(36), 24249–52.PubMedGoogle Scholar
  67. 67.
    Jones, R G; Parsons, M; Bonnard, M; Chan, V S; Yeh, W C; Woodgett, J R; Ohashi, P S. Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J Exp Med, 2000 May 15, 191(10), 1721–34.PubMedCrossRefGoogle Scholar
  68. 68.
    Narayan, P; Holt, B; Tosti, R; Kane, L P. CARMA1 is required for Akt-mediated NF-kappaB activation in T cells. Mol Cell Biol, 2006 Mar, 26(6), 2327–36.PubMedCrossRefGoogle Scholar
  69. 69.
    Martin, E; O'Sullivan, B; Low, P; Thomas, R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity, 2003 Jan, 18(1), 155–67.PubMedCrossRefGoogle Scholar
  70. 70.
    Heissmeyer, V; Macian, F; Im, S H; Varma, R; Feske, S; Venuprasad, K; Gu, H; Liu, Y C; Dustin, M L; Rao, A. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signalling proteins. Nat Immunol, 2004 Mar, 5(3), 255–65.PubMedCrossRefGoogle Scholar
  71. 71.
    Michel, F; Mangino, G; Attal-Bonnefoy, G; Tuosto, L; Alcover, A; Roumier, A; Olive, D; Acuto, O. CD28 utilizes Vav-1 to enhance TCR-proximal signalling and NF-AT activation. J Immunol, 2000 Oct 1, 165(7), 3820–9.PubMedGoogle Scholar
  72. 72.
    Raab, M; Cai, Y C; Bunnell, S C; Heyeck, S D; Berg, L J; Rudd, C E. p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptor-bound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: implications for T-cell costimulation. Proc Natl Acad Sci USA, 1995 Sep 12, 92(19), 8891–5.PubMedCrossRefGoogle Scholar
  73. 73.
    King, P D; Sadra, A; Teng, J M; Xiao-Rong, L; Han, A; Selvakumar, A; August, A; Dupont, B. Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK. J Immunol, 1997 Jan 15, 158(2), 580–90.PubMedGoogle Scholar
  74. 74.
    Viola, A; Schroeder, S; Sakakibara, Y; Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science, 1999 Jan 29, 283(5402), 680–2.PubMedCrossRefGoogle Scholar
  75. 75.
    Tavano, R; Gri, G; Molon, B; Marinari, B; Rudd, C E; Tuosto, L; Viola, A. CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J Immunol, 2004 Nov 1, 173(9), 5392–7.PubMedGoogle Scholar
  76. 76.
    Alegre, M L; Frauwirth, K A; Thompson, C B. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol, 2001 Dec, 1(3), 220–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Takahashi, T; Tagami, T; Yamazaki, S; Uede, T; Shimizu, J; Sakaguchi, N; Mak, T W; Sakaguchi, S. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med, 2000 Jul 17, 192(2), 303–10.PubMedCrossRefGoogle Scholar
  78. 78.
    Salomon, B; Lenschow, D J; Rhee, L; Ashourian, N; Singh, B; Sharpe, A; Bluestone, J A. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity, 2000 Apr, 12(4), 431–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Tang, Q; Henriksen, K J; Boden, E K; Tooley, A J; Ye, J; Subudhi, S K; Zheng, X X; Strom, T B; Bluestone, J A. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol, 2003 Oct 1, 171(7), 3348–52.PubMedGoogle Scholar
  80. 80.
    Tai, X; Cowan, M; Feigenbaum, L; Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol, 2005 Feb, 6(2), 152–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Shimizu, J; Yamazaki, S; Takahashi, T; Ishida, Y; Sakaguchi, S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol, 2002 Feb, 3(2), 135–42.PubMedCrossRefGoogle Scholar
  82. 82.
    Annunziato, F; Cosmi, L; Liotta, F; Lazzeri, E; Manetti, R; Vanini, V; Romagnani, P; Maggi, E; Romagnani, S. Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. J Exp Med, 2002 Aug 5, 196(3), 379–87.PubMedCrossRefGoogle Scholar
  83. 83.
    Linsley, P S; Bradshaw, J; Greene, J; Peach, R; Bennett, K L; Mittler, R S. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity, 1996 Jun, 4(6), 535–43.PubMedCrossRefGoogle Scholar
  84. 84.
    Pentcheva-Hoang, T; Egen, J G; Wojnoonski, K; Allison, J P. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity, 2004 Sep, 21(3), 401–13.PubMedCrossRefGoogle Scholar
  85. 85.
    Tivol, E A; Borriello, F; Schweitzer, A N; Lynch, W P; Bluestone, J A; Sharpe, A H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995 Nov, 3(5), 541–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Sansom, D M; Walker, L S. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev, 2006 Aug, 212, 131–48.PubMedCrossRefGoogle Scholar
  87. 87.
    Kataoka, H; Takahashi, S; Takase, K; Yamasaki, S; Yokosuka, T; Koike, T; Saito, T. CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Int Immunol, 2005 Apr, 17(4), 421–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Tang, Q; Boden, E K; Henriksen, K J; Bour-Jordan, H; Bi, M; Bluestone, J A. Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. Eur J Immunol, 2004 Nov, 34(11), 2996–3005.PubMedCrossRefGoogle Scholar
  89. 89.
    Chikuma, S; Imboden, J B; Bluestone, J A. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J Exp Med, 2003 Jan 6, 197(1), 129–35.PubMedCrossRefGoogle Scholar
  90. 90.
    Parry, R V; Chemnitz, J M; Frauwirth, K A; Lanfranco, A R; Braunstein, I; Kobayashi, S V; Linsley, P S; Thompson, C B; Riley, J L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol, 2005 Nov, 25(21), 9543–53.PubMedCrossRefGoogle Scholar
  91. 91.
    Hoyne, G F; Dallman, M J; Lamb, J R. Linked suppression in peripheral T cell tolerance to the house dust mite derived allergen Der p 1. Int Arch Allergy Immunol, 1999, 118(2–4), 122–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Taams, L S; Wauben, M H. Anergic T cells as active regulators of the immune response. Hum Immunol, 2000, 61(7), 633–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Hoyne, G F; Le Roux, I; Corsin-Jimenez, M; Tan, K; Dunne, J; Forsyth, L M; Dallman, M J; Owen, M J; Ish-Horowicz, D; Lamb, J R. Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4(+) T cells. Int Immunol, 2000, 12(2), 177–85.PubMedCrossRefGoogle Scholar
  94. 94.
    Thornton, A M; Donovan, E E; Piccirillo, C A; Shevach, E M. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol, 2004 Jun 1, 172(11), 6519–23.PubMedGoogle Scholar
  95. 95.
    Snow, J W; Abraham, N; Ma, M C; Herndier, B G; Pastuszak, A W; Goldsmith, M A. Loss of tolerance and autoimmunity affecting multiple organs in STAT5A/5B-deficient mice. J Immunol, 2003 Nov 15, 171(10), 5042–50.PubMedGoogle Scholar
  96. 96.
    Burchill, M A; Goetz, C A; Prlic, M; O'Neil, J J; Harmon, I R; Bensinger, S J; Turka, L A; Brennan, P; Jameson, S C; Farrar, M A. Distinct effects of STAT5 activation on CD4+ and CD8+ T cell homeostasis: development of CD4+CD25+ regulatory T cells versus CD8+ memory T cells. J Immunol, 2003 Dec 1, 171(11), 5853–64.PubMedGoogle Scholar
  97. 97.
    Yu, A; Malek, T R. Selective availability of IL-2 is a major determinant controlling the production of CD4+CD25+Foxp3+ T regulatory cells. J Immunol, 2006 Oct 15, 177(8), 5115–21.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Natasha R. Locke
  • Natasha K. Crellin
  • Megan K. Levings
    • 1
  1. 1.Department of SurgeryUniversity of British Columbia and Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute2660 Oak St. VancouverCanada

Personalised recommendations