Skip to main content

Innate Regulatory iNKT Cells

  • Chapter
  • First Online:
Regulatory T Cells and Clinical Application
  • 667 Accesses

Abstract

The complexity of the immune system requires mechanisms, cellular and molecular, that coordinate early innate immune responses to those of late adaptive immune responses. One type of immune cell that is able to mediate this bridge between innate immunity and adaptive immunity is the invariant natural killer T (iNKT) cell. In recent years, much research has been focused on describing the role of iNKT cells in a variety of immune responses, from pathogen clearance, cancer immunity, to autoimmune regulation. In each of these immune conditions, iNKT cells have been shown to play direct or indirect roles in the coordinating immune responses leading to downstream effector activation. In this review, we highlight our current understanding of iNKT cell biology, and provide an overview of iNKT cell antigen specificities and of the role of iNKT cells in regulating immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janeway, CA. Jr; Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 2002, 20: 197–216.

    PubMed  CAS  Google Scholar 

  2. Godfrey, DI; MacDonald, HR; Kronenberg, M; Smyth, MJ; Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 2004, 4: 231–237.

    PubMed  CAS  Google Scholar 

  3. Vincent, MS; Gumperz, JE; Brenner, MB. Understanding the function of CD1-restricted T cells. Nat. Immunol. 2003, 4: 517–523.

    PubMed  CAS  Google Scholar 

  4. Yokoyama, WM; Plougastel, BF. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 2003, 3: 304–316.

    PubMed  CAS  Google Scholar 

  5. Bendelac, A; Rivera, MN; Park, SH; Roark, JH. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 1997, 15: 535–562.

    PubMed  CAS  Google Scholar 

  6. Godfrey, DI; Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 2004, 114: 1379–1388.

    PubMed  CAS  Google Scholar 

  7. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 2005, 23: 877–900.

    PubMed  CAS  Google Scholar 

  8. Taniguchi, M; Harada, M; Kojo, S; Nakayama, T; Wakao, H. The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 2003, 21: 483–513.

    PubMed  CAS  Google Scholar 

  9. Wilson, SB; Delovitch, TL. Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat. Rev. Immunol. 2003, 3: 211–222.

    PubMed  CAS  Google Scholar 

  10. Kawano, T; Cui, J; Koezuka, Y; Toura, I; Kaneko, Y; Motoki, K; Ueno, H; Nakagawa, R; Sato, H; Kondo, E; Koseki, H; Taniguchi, M. CD1d-restricted and TCR-mediated activation of Valpha14 NKT cells by glycosylceramides. Science. 1997, 278: 1626–1629.

    PubMed  CAS  Google Scholar 

  11. Brossay, L; Chioda, M; Burdin, N; Koezuka, Y; Casorati, G; Dellabona, P; Kronenberg, M. CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 1998, 188: 1521–1528.

    PubMed  CAS  Google Scholar 

  12. Matsuda, JL; Naidenko, OV; Gapin, L; Nakayama, T; Taniguchi, M; Wang, CR; Koezuka, Y; Kronenberg, M. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 2000, 192: 741–754.

    PubMed  CAS  Google Scholar 

  13. Sidobre, S; Kronenberg, M. CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J. Immunol. Methods 2002, 268: 107–121.

    PubMed  CAS  Google Scholar 

  14. Joyce, S; Woods, AS; Yewdell, JW; Bennink, JR; De Silva, AD; Boesteanu, A; Balk, SP; Cotter, RJ; Brutkiewicz, RR. Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 1998, 279: 1541–1544.

    PubMed  CAS  Google Scholar 

  15. Giabbai, B; Sidobre, S; Crispin, MD; Sanchez-Ruiz, Y; Bachi, A; Kronenberg, M; Wilson, IA; Degano, M. Crystal structure of mouse CD1d bound to the self ligand phosphatidylcholine: a molecular basis for NKT cell activation. J. Immunol. 2005, 175: 977–984.

    PubMed  CAS  Google Scholar 

  16. Brutkiewicz, RR. CD1d ligands: the good, the bad, and the ugly. J. Immunol. 2006, 177: 769–775.

    PubMed  CAS  Google Scholar 

  17. Roberts, TJ; Sriram, V; Spence, PM; Gui, M; Hayakawa, K; Bacik, I; Bennink, JR; Yewdell, JW; Brutkiewicz, RR. Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J. Immunol. 2002, 168: 5409–5414.

    PubMed  CAS  Google Scholar 

  18. Kang, SJ; Cresswell, P. Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat. Immunol. 2004, 5: 175–181.

    PubMed  CAS  Google Scholar 

  19. Major, AS; Joyce, S; Van Kaer, L. Lipid metabolism, atherogenesis and CD1-restricted antigen presentation. Trends Mol. Med. 2006, 12: 270–278.

    PubMed  CAS  Google Scholar 

  20. Zhou, D; Mattner, J; Cantu, C III; Schrantz, N; Yin, N; Gao, Y; Sagiv, Y; Hudspeth, K; Wu, YP; Yamashita, T; Teneberg, S; Wang, D; Proia, RL; Levery, SB; Savage, PB; Teyton, L; Bendelac, A. Lysosomal glycosphingolipid recognition by NKT cells. Science 2004, 306: 1786–1789.

    PubMed  CAS  Google Scholar 

  21. Mattner, J; Debord, KL; Ismail, N; Goff, RD; Cantu, C III; Zhou, D; Saint-Mezard, P; Wang, V; Gao, Y; Yin, N; Hoebe, K; Schneewind, O; Walker, D; Beutler, B; Teyton, L; Savage, P.B; Bendelac, A. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005, 434: 525–529.

    PubMed  CAS  Google Scholar 

  22. Savage, PB; Teyton, L; Bendelac, A. Glycolipids for natural killer T cells. Chem. Soc. Rev. 2006, 35: 771–779.

    PubMed  CAS  Google Scholar 

  23. Apostolou, I; Takahama, Y; Belmant, C; Kawano, T; Huerre, M; Marchal, G; Cui, J; Taniguchi, M; Nakauchi, H; Fournie, JJ; Kourilsky, P; Gachelin, G. Murine natural killer T(NKT) cells [correction of natural killer cells] contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc. Natl. Acad. Sci. U. S. A. 1999, 96: 5141–5146.

    PubMed  CAS  Google Scholar 

  24. Fischer, K; Scotet, E; Niemeyer, M; Koebernick, H; Zerrahn, J; Maillet, S; Hurwitz, R; Kursar, M; Bonneville, M; Kaufmann, SH; Schaible, UE. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl. Acad. Sci. U. S. A. 2004, 101: 10685–10690.

    PubMed  CAS  Google Scholar 

  25. Gilleron, M; Ronet, C; Mempel, M; Monsarrat, B; Gachelin, G; Puzo, G. Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guerin and ability to induce granuloma and recruit natural killer T cells. J. Biol. Chem. 2001, 276: 34896–34904.

    PubMed  CAS  Google Scholar 

  26. Kinjo, Y; Wu, D; Kim, G, Xing, GW; Poles, MA; Ho, DD; Tsuji, M; Kawahara, K; Wong, CH; Kronenberg, M. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 2005, 434: 520–525.

    PubMed  CAS  Google Scholar 

  27. Sriram, V; Du, W; Gervay-Hague, J; Brutkiewicz, RR. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur. J. Immunol. 2005, 35: 1692–1701.

    PubMed  CAS  Google Scholar 

  28. Kinjo, Y; Tupin, E; Wu, D; Fujio, M; Garcia-Navarro, R; Benhnia, MR; Zajonc, DM; Ben Menachem, G; Ainge, GD; Painter, GF; Khurana, A; Hoebe, K; Behar, SM; Beutler, B; Wilson, IA; Tsuji, M; Sellati, TJ; Wong, CH; Kronenberg, M. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 2006, 7: 978–986.

    PubMed  CAS  Google Scholar 

  29. Kumar, H; Belperron, A; Barthold, SW; Bockenstedt, LK. Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J. Immunol. 2000, 165: 4797–4801.

    PubMed  CAS  Google Scholar 

  30. Burdin, N; Brossay, L; Kronenberg, M. Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur. J. Immunol. 1999, 29: 2014–2025.

    PubMed  CAS  Google Scholar 

  31. Singh, N; Hong, S; Scherer, DC; Serizawa, I; Burdin, N; Kronenberg, M; Koezuka, Y; Van Kaer, L. Cutting edge: activation of NK T cells by CD1d and alpha-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J. Immunol. 1999, 163: 2373–2377.

    PubMed  CAS  Google Scholar 

  32. Parekh, VV; Wilson, MT; Olivares-Villagomez, D; Singh, AK; Wu, L; Wang, CR; Joyce, S; Van Kaer, L. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest. 2005, 115: 2572–2583.

    PubMed  CAS  Google Scholar 

  33. Uldrich, AP; Crowe, NY; Kyparissoudis, K; Pellicci, DG; Zhan, Y; Lew, AM; Bouillet, P; Strasser, A; Smyth, MJ; Godfrey, DI. NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J. Immunol. 2005, 175: 3092–3101.

    PubMed  CAS  Google Scholar 

  34. Fujii, S; Shimizu, K; Kronenberg, M; Steinman, RM. Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat. Immunol. 2002, 3: 867–874.

    PubMed  CAS  Google Scholar 

  35. Toura, I; Kawano, T; Akutsu, Y; Nakayama, T; Ochiai, T; Taniguchi, M. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with alpha-galactosylceramide. J. Immunol. 1999, 163: 2387–2391.

    PubMed  CAS  Google Scholar 

  36. Bezbradica, JS; Stanic, AK; Matsuki, N; Bour-Jordan, H; Bluestone, JA; Thomas, JW; Unutmaz, D; Van Kaer, L; Joyce, S. Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo. J. Immunol. 2005, 174: 4696–4705.

    PubMed  CAS  Google Scholar 

  37. Miyamoto, K; Miyake, S; Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001, 413: 531–534.

    PubMed  CAS  Google Scholar 

  38. Mizuno, M; Masumura, M; Tomi, C; Chiba, A; Oki, S; Yamamura, T; Miyake, S. Synthetic glycolipid OCH prevents insulitis and diabetes in NOD mice. J. Autoimmun. 2004, 23: 293–300.

    PubMed  CAS  Google Scholar 

  39. Oki, S; Chiba, A; Yamamura, T; Miyake, S. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest. 2004, 113: 1631–1640.

    PubMed  CAS  Google Scholar 

  40. Yu, KO; Im, JS; Molano, A; Dutronc, Y; Illarionov, PA; Forestier, C; Fujiwara, N; Arias, I; Miyake, S; Yamamura, T; Chang, YT; Besra, GS; Porcelli, SA. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of alpha-galactosylceramides. Proc. Natl. Acad. Sci. U. S. A. 2005, 102: 3383–3388.

    PubMed  CAS  Google Scholar 

  41. Schmieg, J; Yang, G; Franck, RW; Tsuji, M. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J. Exp. Med. 2003, 198: 1631–1641.

    PubMed  CAS  Google Scholar 

  42. Fujii, S; Shimizu, K; Hemmi, H; Fukui, M; Bonito, AJ; Chen, G; Franck, RW; Tsuji, M; Steinman, RM. Glycolipid alpha-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc. Natl. Acad. Sci. U. S. A. 2006, 103: 11252–11257.

    PubMed  CAS  Google Scholar 

  43. Skold, M; Behar, SM. Role of CD1d-restricted NKT cells in microbial immunity. Infect. Immun. 2003, 71: 5447–5455.

    PubMed  Google Scholar 

  44. Hansen, DS; Schofield, L. Regulation of immunity and pathogenesis in infectious diseases by CD1d-restricted NKT cells. Int. J. Parasitol. 2004, 34: 15–25.

    PubMed  CAS  Google Scholar 

  45. Nieuwenhuis, EE; Matsumoto, T; Exley, M; Schleipman, RA; Glickman, J; Bailey, DT; Corazza, N; Colgan, SP; Onderdonk, AB; Blumberg, RS. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat. Med. 2002, 8: 588–593.

    PubMed  CAS  Google Scholar 

  46. Grubor-Bauk, B; Simmons, A; Mayrhofer, G; Speck, PG. Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR. J. Immunol. 2003, 170: 1430–1434.

    PubMed  CAS  Google Scholar 

  47. Raftery, MJ; Winau, F; Kaufmann, SH; Schaible, UE; Schonrich, G. CD1 antigen presentation by human dendritic cells as a target for herpes simplex virus immune evasion. J. Immunol. 2006, 177: 6207–6214.

    PubMed  CAS  Google Scholar 

  48. Yuan, W; Dasgupta, A; Cresswell, P. Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling. Nat. Immunol. 2006, 7: 835–842.

    PubMed  CAS  Google Scholar 

  49. van Dommelen, SL; Tabarias, HA; Smyth, MJ; Degli-Esposti, MA. Activation of natural killer (NK) T cells during murine cytomegalovirus infection enhances the antiviral response mediated by NK cells. J. Virol. 2003, 77: 1877–1884.

    PubMed  Google Scholar 

  50. Liu, YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 2005, 23: 275–306.

    PubMed  CAS  Google Scholar 

  51. Colonna, M; Trinchieri, G; Liu, J. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 2004, 5: 1219–1226.

    PubMed  CAS  Google Scholar 

  52. Marschner, A; Rothenfusser, S; Hornung, V; Prell, D; Krug, A; Kerkmann, M; Wellisch, D; Poeck, H; Greinacher, A; Giese, T; Endres, S; Hartmann, G. CpG ODN enhance antigen-specific NKT cell activation via plasmacytoid dendritic cells. Eur. J. Immunol. 2005, 35: 2347–2357.

    PubMed  CAS  Google Scholar 

  53. Montoya, CJ; Jie, HB; Al Harthi, L; Mulder, C; Patino, PJ; Rugeles, MT; Krieg, AM; Landay, AL; Wilson, SB. Activation of plasmacytoid dendritic cells with TLR9 agonists initiates invariant NKT cell-mediated cross-talk with myeloid dendritic cells. J. Immunol. 2006, 177: 1028–1039.

    PubMed  CAS  Google Scholar 

  54. Ishikawa, H; Hisaeda, H; Taniguchi, M; Nakayama, T; Sakai, T; Maekawa, Y; Nakano, Y; Zhang, M; Zhang, T; Nishitani, M; Takashima, M; Himeno, K. CD4(+) v(alpha)14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major. Int. Immunol. 2000, 12: 1267–1274.

    PubMed  CAS  Google Scholar 

  55. Gonzalez-Aseguinolaza, G; de Oliveira, C; Tomaska, M; Hong, S; Bruna-Romero, O; Nakayama, T; Taniguchi, M; Bendelac, A; Van Kaer, L; Koezuka, Y; Tsuji, M. alpha-galactosylceramide-activated Valpha 14 natural killer T cells mediate protection against murine malaria. Proc. Natl. Acad. Sci. U. S. A. 2000, 97: 8461–8466.

    PubMed  CAS  Google Scholar 

  56. Hansen, DS; Siomos, MA; Buckingham, L; Scalzo, AA; Schofield, L. Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex. Immunity. 2003, 18: 391–402.

    PubMed  CAS  Google Scholar 

  57. Cui, J; Shin, T; Kawano, T; Sato, H; Kondo, E; Toura, I; Kaneko, Y; Koseki, H; Kanno, M; Taniguchi, M. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 1997, 278: 1623–1626.

    PubMed  CAS  Google Scholar 

  58. Munz, C; Steinman, RM; Fujii, S. Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J. Exp. Med. 2005, 202: 203–207.

    PubMed  Google Scholar 

  59. Seino, K; Motohashi, S; Fujisawa, T; Nakayama, T; Taniguchi, M. Natural killer T cell-mediated antitumor immune responses and their clinical applications. Cancer Sci. 2006, 97: 807–812.

    PubMed  CAS  Google Scholar 

  60. Smyth, MJ; Crowe, NY; Hayakawa, Y; Takeda, K; Yagita, H; Godfrey, DI. NKT cells – conductors of tumor immunity? Curr. Opin. Immunol. 2002, 14: 165–171.

    PubMed  CAS  Google Scholar 

  61. Hayakawa, Y; Takeda, K; Yagita, H; Kakuta, S; Iwakura, Y; Van Kaer, L; Saiki, I; Okumura, K. Critical contribution of IFN-gamma and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of alpha-galactosylceramide. Eur. J. Immunol. 2001, 31: 1720–1727.

    PubMed  CAS  Google Scholar 

  62. Smyth, MJ; Crowe, NY; Pellicci, DG; Kyparissoudis, K; Kelly, JM; Takeda, K; Yagita, H; Godfrey, DI. Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 2002, 99: 1259–1266.

    PubMed  CAS  Google Scholar 

  63. Fujii, S; Shimizu, K; Smith, C; Bonifaz, L; Steinman, RM. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 2003, 198: 267–279.

    PubMed  CAS  Google Scholar 

  64. Fujii, S; Liu, K; Smith, C; Bonito, AJ; Steinman, RM. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 2004, 199: 1607–1618.

    PubMed  CAS  Google Scholar 

  65. Smyth, MJ; Thia, KY; Street, SE; Cretney, E; Trapani, JA; Taniguchi, M; Kawano, T; Pelikan, SB; Crowe, NY; Godfrey, DI. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 2000, 191: 661–668.

    PubMed  CAS  Google Scholar 

  66. Crowe, NY; Smyth, MJ; Godfrey, DI. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J. Exp. Med. 2002, 196: 119–127.

    PubMed  CAS  Google Scholar 

  67. Crowe, NY; Coquet, JM; Berzins, SP; Kyparissoudis, K; Keating, R; Pellicci, DG; Hayakawa, Y; Godfrey, DI; Smyth, MJ. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med. 2005, 202: 1279–1288.

    PubMed  CAS  Google Scholar 

  68. Kawano, T; Nakayama, T; Kamada, N; Kaneko, Y; Harada, M; Ogura, N; Akutsu, Y; Motohashi, S; Iizasa, T; Endo, H; Fujisawa, T; Shinkai, H; Taniguchi, M. Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res. 1999, 59: 5102–5105.

    PubMed  CAS  Google Scholar 

  69. Rogers, PR; Matsumoto, A; Naidenko, O; Kronenberg, M; Mikayama, T; Kato, S. Expansion of human Valpha24+ NKT cells by repeated stimulation with KRN7000. J. Immunol. Methods 2004, 285: 197–214.

    PubMed  CAS  Google Scholar 

  70. van der Vliet, HJ; Nishi, N; Koezuka, Y; von Blomberg, BM; van den Eertwegh, AJ; Porcelli, SA; Pinedo, HM; Scheper, RJ; Giaccone, G. Potent expansion of human natural killer T cells using alpha-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J. Immunol. Methods 2001, 247: 61–72.

    PubMed  Google Scholar 

  71. Giaccone, G; Punt, C.J; Ando, Y; Ruijter, R; Nishi, N; Peters, M; von Blomberg, BM; Scheper, RJ; van der Vliet, HJ; van den Eertwegh, AJ; Roelvink, M; Beijnen, J; Zwierzina, H; Pinedo, HM. A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res. 2002, 8: 3702–3709.

    PubMed  CAS  Google Scholar 

  72. Nieda, M; Okai, M; Tazbirkova, A; Lin, H; Yamaura, A; Ide, K; Abraham, R; Juji, T; Macfarlane, DJ; Nicol, AJ. Therapeutic activation of Valpha24+Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 2004, 103: 383–389.

    PubMed  CAS  Google Scholar 

  73. Chang, DH; Osman, K; Connolly, J; Kukreja, A; Krasovsky, J; Pack, M; Hutchinson, A; Geller, M; Liu, N; Annable, R; Shay, J; Kirchhoff, K; Nishi, N; Ando, Y; Hayashi, K; Hassoun, H; Steinman, RM; Dhodapkar, MV. Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med. 2005, 201: 1503–1517.

    PubMed  CAS  Google Scholar 

  74. Ishikawa, A; Motohashi, S; Ishikawa, E; Fuchida, H; Higashino, K; Otsuji, M; Iizasa, T; Nakayama, T; Taniguchi, M; Fujisawa, T. A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 2005, 11: 1910–1917.

    PubMed  CAS  Google Scholar 

  75. Motohashi, S; Ishikawa, A; Ishikawa, E; Otsuji, M; Iizasa, T; Hanaoka, H; Shimizu, N; Horiguchi, S; Okamoto, Y; Fujii, S; Taniguchi, M; Fujisawa, T; Nakayama, T. A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 2006, 12: 6079–6086.

    PubMed  CAS  Google Scholar 

  76. Shevach, EM. Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 2000, 18: 423–449.

    PubMed  CAS  Google Scholar 

  77. Sakaguchi, S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 2004, 22: 531–562.

    PubMed  CAS  Google Scholar 

  78. Kronenberg, M; Rudensky, A. Regulation of immunity by self-reactive T cells. Nature. 2005, 435: 598–604.

    PubMed  CAS  Google Scholar 

  79. Delovitch, TL; Singh, B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity. 1997, 7: 727–738.

    PubMed  CAS  Google Scholar 

  80. Shoda, LK; Young, DL; Ramanujan, S; Whiting, CC; Atkinson, MA; Bluestone, JA; Eisenbarth, GS; Mathis, D; Rossini, AA; Campbell, SE; Kahn, R; Kreuwel, HT. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 2005, 23: 115–126.

    PubMed  CAS  Google Scholar 

  81. Van Kaer, L. alpha-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat. Rev. Immunol. 2005, 5: 31–42.

    PubMed  Google Scholar 

  82. Hammond, KJ; Kronenberg, M. Natural killer T cells: natural or unnatural regulators of autoimmunity? Curr. Opin. Immunol. 2003, 15: 683–689.

    PubMed  CAS  Google Scholar 

  83. Lehuen, A; Lantz, O; Beaudoin, L; Laloux, V; Carnaud, C; Bendelac, A; Bach, JF; Monteiro, RC. Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 1998, 188: 1831–1839.

    PubMed  CAS  Google Scholar 

  84. Hammond, KJ; Pellicci, DG; Poulton, LD; Naidenko, OV; Scalzo, AA; Baxter, AG; Godfrey, DI. CD1d-restricted NKT cells: an interstrain comparison. J. Immunol. 2001, 167: 1164–1173.

    PubMed  CAS  Google Scholar 

  85. Hong, S; Wilson, MT; Serizawa, I; Wu, L; Singh, N; Naidenko, OV; Miura, T; Haba, T; Scherer, DC; Wei, J; Kronenberg, M; Koezuka, Y; Van Kaer, L. The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat. Med. 2001, 7: 1052–1056.

    PubMed  CAS  Google Scholar 

  86. Poulton, LD; Smyth, MJ; Hawke, CG; Silveira, P; Shepherd, D; Naidenko, OV; Godfrey, DI; Baxter, A.G. Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. Int. Immunol. 2001, 13: 887–896.

    PubMed  CAS  Google Scholar 

  87. Sharif, S; Arreaza, GA; Zucker, P; Mi, QS; Sondhi, J; Naidenko, OV; Kronenberg, M; Koezuka, Y; Delovitch, TL; Gombert, JM; Leite-De-Moraes, M; Gouarin, C; Zhu, R; Hameg, A; Nakayama, T; Taniguchi, M; Lepault, F; Lehuen, A; Bach, JF; Herbelin, A. Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat. Med. 2001, 7: 1057–1062.

    PubMed  CAS  Google Scholar 

  88. Wang, B; Geng, YB; Wang, CR. CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med. 2001, 194: 313–320.

    PubMed  Google Scholar 

  89. Mi, QS; Ly, D; Zucker, P; McGarry, M; Delovitch, TL. Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T-cells. Diabetes 2004, 53: 1303–1310.

    PubMed  CAS  Google Scholar 

  90. Chen, YG; Choisy-Rossi, CM; Holl, TM; Chapman, HD; Besra, GS; Porcelli, SA; Shaffer, DJ; Roopenian, D; Wilson, SB; Serreze, DV. Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes. J. Immunol. 2005, 174: 1196–1204.

    PubMed  CAS  Google Scholar 

  91. Novak, J; Beaudoin, L; Griseri, T; Lehuen, A. Inhibition of T cell differentiation into effectors by NKT cells requires cell contacts. J. Immunol. 2005, 174: 1954–1961.

    PubMed  CAS  Google Scholar 

  92. Naumov, YN; Bahjat, KS; Gausling, R; Abraham, R; Exley, MA; Koezuka, Y; Balk, SB; Strominger, JL; Clare-Salzer, M; Wilson, SB. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc. Natl. Acad. Sci. U. S. A. 2001, 98: 13838–13843.

    PubMed  CAS  Google Scholar 

  93. Beaudoin, L; Laloux, V; Novak, J; Lucas, B; Lehuen, A. NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity 2002, 17: 725–736.

    PubMed  CAS  Google Scholar 

  94. Cain, JA; Smith, JA; Ondr, JK; Wang, B; Katz, JD. NKT cells and IFN-gamma establish the regulatory environment for the control of diabetogenic T cells in the nonobese diabetic mouse. J. Immunol. 2006, 176: 1645–1654.

    PubMed  CAS  Google Scholar 

  95. Tang, Q; Adams, JY; Tooley, AJ; Bi, M; Fife, BT; Serra, P; Santamaria, P; Locksley, RM; Krummel, MF; Bluestone, JA. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 2006, 7: 83–92.

    PubMed  CAS  Google Scholar 

  96. Tadokoro, CE; Shakhar, G; Shen, S; Ding, Y; Lino, AC; Maraver, A; Lafaille, JJ; Dustin, ML. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 2006, 203: 505–511.

    PubMed  CAS  Google Scholar 

  97. Griseri, T; Beaudoin, L; Novak, J; Mars, LT; Lepault, F; Liblau, R; Lehuen, A. Invariant NKT cells exacerbate type 1 diabetes induced by CD8 T cells. J. Immunol. 2005, 175: 2091–2101.

    PubMed  CAS  Google Scholar 

  98. Wilson, SB; Kent, SC; Patton, KT; Orban, T; Jackson, RA; Exley, M; Porcelli, S; Schatz, DA; Atkinson, MA; Balk, SP; Strominger, JL; Hafler, DA. Extreme Th1 bias of invariant Valpha24JalphaQ T cells in type 1 diabetes. Nature 1998, 391: 177–181.

    PubMed  CAS  Google Scholar 

  99. Oikawa, Y; Shimada, A; Yamada, S; Motohashi, Y; Nakagawa, Y; Irie, J; Maruyama, T; Saruta, T. High frequency of valpha24(+) vbeta11(+) T-cells observed in type 1 diabetes. Diabetes Care 2002, 25: 1818–1823.

    PubMed  Google Scholar 

  100. Lee, PT; Putnam, A; Benlagha, K; Teyton, L; Gottlieb, PA; Bendelac, A. Testing the NKT cell hypothesis of human IDDM pathogenesis. J. Clin. Invest. 2002, 110: 793–800.

    PubMed  CAS  Google Scholar 

  101. Berzins, SP; Kyparissoudis, K; Pellicci, DG; Hammond, KJ; Sidobre, S; Baxter, A; Smyth, MJ; Kronenberg, M; Godfrey, D.I. Systemic NKT cell deficiency in NOD mice is not detected in peripheral blood: implications for human studies. Immunol. Cell Biol. 2004, 82: 247–252.

    PubMed  Google Scholar 

  102. Kent, SC; Chen, Y; Clemmings, SM; Viglietta, V; Kenyon, NS; Ricordi, C; Hering, B; Hafler, DA. Loss of IL-4 secretion from human type 1a diabetic pancreatic draining lymph node NKT cells. J. Immunol. 2005, 175: 4458–4464.

    PubMed  CAS  Google Scholar 

  103. Jahng, AW; Maricic, I; Pedersen, B; Burdin, N; Naidenko, O; Kronenberg, M; Koezuka, Y; Kumar, V. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 2001, 194: 1789–1799.

    PubMed  CAS  Google Scholar 

  104. Singh, AK; Wilson, MT; Hong, S; Olivares-Villagomez, D; Du, C; Stanic, AK; Joyce, S; Sriram, S; Koezuka, Y; Van Kaer, L. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 2001, 194: 1801–1811.

    PubMed  CAS  Google Scholar 

  105. Furlan, R; Bergami, A; Cantarella, D; Brambilla, E; Taniguchi, M; Dellabona, P; Casorati, G; Martino, G. Activation of invariant NKT cells by alphaGalCer administration protects mice from MOG35–55-induced EAE: critical roles for administration route and IFN-gamma. Eur. J. Immunol. 2003, 33: 1830–1838.

    PubMed  CAS  Google Scholar 

  106. Mars, LT; Laloux, V; Goude, K; Desbois, S; Saoudi, A; Van Kaer, L; Lassmann, H; Herbelin, A; Lehuen, A; Liblau, RS. Cutting edge: V alpha 14-J alpha 281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J. Immunol. 2002, 168: 6007–6011.

    PubMed  CAS  Google Scholar 

  107. Araki, M; Kondo, T; Gumperz, JE; Brenner, MB; Miyake, S; Yamamura, T. Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int. Immunol. 2003, 15: 279–288.

    PubMed  CAS  Google Scholar 

  108. Major, AS; Singh, RR; Joyce, S; Van Kaer, L. The role of invariant natural killer T cells in lupus and atherogenesis. Immunol. Res. 2006, 34: 49–66.

    PubMed  CAS  Google Scholar 

  109. Mieza, MA; Itoh, T; Cui, JQ; Makino, Y; Kawano, T; Tsuchida, K; Koike, T; Shirai, T; Yagita, H; Matsuzawa, A; Koseki, H; Taniguchi, M. Selective reduction of V alpha 14+ NK T cells associated with disease development in autoimmune-prone mice. J. Immunol. 1996, 156: 4035–4040.

    PubMed  CAS  Google Scholar 

  110. Oishi, Y; Sumida, T; Sakamoto, A; Kita, Y; Kurasawa, K; Nawata, Y; Takabayashi, K; Takahashi, H; Yoshida, S; Taniguchi, M; Saito, Y; Iwamoto, I. Selective reduction and recovery of invariant Valpha24JalphaQ T cell receptor T cells in correlation with disease activity in patients with systemic lupus erythematosus. J. Rheumatol. 2001, 28: 275–283.

    PubMed  CAS  Google Scholar 

  111. Kojo, S; Adachi, Y; Keino, H; Taniguchi, M; Sumida, T. Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum. 2001, 44: 1127–1138.

    PubMed  CAS  Google Scholar 

  112. Yang, JQ; Chun, T; Liu, H; Hong, S; Bui, H; Van Kaer, L; Wang, CR; Singh, RR. CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice. Eur. J. Immunol. 2004, 34: 1723–1732.

    PubMed  CAS  Google Scholar 

  113. Yang, JQ; Saxena, V; Xu, H; Van Kaer, L; Wang, CR; Singh, RR. Repeated alpha-galactosylceramide administration results in expansion of NK T cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J. Immunol. 2003, 171: 4439–4446.

    PubMed  CAS  Google Scholar 

  114. Forestier, C; Molano, A; Im, JS; Dutronc, Y; Diamond, B; Davidson, A; Illarionov, PA; Besra, GS; Porcelli, SA. Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black x New Zealand White)F1 mice. J. Immunol. 2005, 175: 763–770.

    PubMed  CAS  Google Scholar 

  115. Zeng, D; Liu, Y; Sidobre, S; Kronenberg, M; Strober, S. Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J. Clin. Invest. 2003, 112: 1211–1222.

    PubMed  CAS  Google Scholar 

  116. La Cava, A; Van Kaer, L; Fu, DS. CD4+CD25+ Tregs and NKT cells: regulators regulating regulators. Trends Immunol. 2006, 27: 322–327.

    PubMed  Google Scholar 

  117. Roelofs-Haarhuis, K; Wu, X; Gleichmann, E. Oral tolerance to nickel requires CD4+ invariant NKT cells for the infectious spread of tolerance and the induction of specific regulatory T cells. J. Immunol. 2004, 173: 1043–1050.

    PubMed  CAS  Google Scholar 

  118. Liu, R; La Cava, A; Bai, XF; Jee, Y; Price, M; Campagnolo, DI; Christadoss, P; Vollmer, TL; Van Kaer, L; Shi, FD. Cooperation of invariant NKT cells and CD4+CD25+ T regulatory cells in the prevention of autoimmune myasthenia. J. Immunol. 2005, 175: 7898–7904.

    PubMed  CAS  Google Scholar 

  119. Jiang, S; Game, DS; Davies, D; Lombardi, G; Lechler, RI. Activated CD1d-restricted natural killer T cells secrete IL-2: innate help for CD4+CD25+ regulatory T cells? Eur. J. Immunol. 2005, 35: 1193–1200.

    PubMed  CAS  Google Scholar 

  120. Azuma, T; Takahashi, T; Kunisato, A; Kitamura, T; Hirai, H. Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res. 2003, 63: 4516–4520.

    PubMed  CAS  Google Scholar 

  121. Nishikawa, H; Kato, T; Tanida, K; Hiasa, A; Tawara, I; Ikeda, H; Ikarashi, Y; Wakasugi, H; Kronenberg, M; Nakayama, T; Taniguchi, M; Kuribayashi, K; Old, LJ; Shiku, H. CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc. Natl. Acad. Sci. U. S. A. 2003, 100: 10902–10906.

    PubMed  CAS  Google Scholar 

  122. Ly, D; Mi, QS; Hussain, S; Delovitch, TL. Protection from type 1 diabetes by invariant NK T cells requires the activity of CD4+CD25+ regulatory T cells. J. Immunol. 2006, 177: 3695–3704.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry L. Delovitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ly, D., Delovitch, T.L. (2008). Innate Regulatory iNKT Cells. In: Jiang, S. (eds) Regulatory T Cells and Clinical Application. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77909-6_27

Download citation

Publish with us

Policies and ethics