Advertisement

FoxP3 and Regulatory T Cells

  • Karsten Kretschmer
  • Irina Apostolou
  • Panos Verginis
  • Harald von Boehmer
Chapter

Abstract

Some regulatory T cells express the Foxp3 transcription factor and such Tregs have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to Forkhead motifs of about 1100 genes and the strength of binding increases when Foxp3-expressing T cells are stimulated by PMA and ionomycin. In Foxp3-expressing T cell hybridomas, Foxp3 binding to DNA does not lead to the activation or suppression of genes which becomes only visible after T cell activation. These findings are in line with observations by others that Foxp3 exerts important functions through association with T cell receptor-dependent transcription factors in a DNA-binding complex.

Tregs can be generated when developing T cells encounter TCR agonist ligands in the thymus. This process does not require TGF-β signaling in the T cells but requires costimulatory signals. In contrast, the conversion of naïve T cells into Tregs in peripheral lymphoid tissue essentially depends on TGF-β and is inhibited by costimulation. In fact retinoic acid, produced by some dendritic cells, helps the conversion process by counteracting the negative impact of costimulation on the conversion process. Since AP-1 is produced after costimulation and appears to interfere with a Foxp3-NFAT transcription complex, it is of interest to note that retinoic acid interferes with AP-1-dependent transcription. Thus, retinoic acid may interfere with the negative impact of costimulation on Treg conversion by interfering with the generation and/or function of AP-1.

Peripherally converted Tregs have a stable Foxp3+ phenotype and in mice can survive for several months in the absence of the antigen that induced their formation. In fact the prospective induction of Tregs can be used to generate antigen-specific tolerance that relies on immunosuppression of neighboring CD4 and CD8 T cells by Foxp3+ Tregs in antigen-draining lymph nodes. The mechanisms of suppression may involve cytokines such as TGF-β and IL-10 but also other mechanisms that involve suppressive purine-metabolites such as adenosine or adenosine-monophosphate.

Keywords

Retinoic Acid Thymic Epithelial Cell Peripheral Lymphoid Tissue Pancreatic Lymph Node Foxp3 Transcription Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    von Boehmer, H., and P. Kisielow. 2006. Negative selection of the T-cell repertoire: where and when does it occur? Immunol Rev 209:284–289.CrossRefGoogle Scholar
  2. 2.
    Rocha, B., and H. von Boehmer. 1991. Peripheral selection of the T cell repertoire. Science 251:1225–1228.PubMedCrossRefGoogle Scholar
  3. 3.
    Sakaguchi, S., M. Ono, R. Setoguchi, H. Yagi, S. Hori, Z. Fehervari, J. Shimizu, T. Takahashi, and T. Nomura. 2006. Foxp3CD25CD4 natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212:8–27.PubMedCrossRefGoogle Scholar
  4. 4.
    von Boehmer, H., I. Aifantis, F. Gounari, O. Azogui, L. Haughn, I. Apostolou, E. Jaeckel, F. Grassi, and L. Klein. 2003. Thymic selection revisited: how essential is it? Immunol Rev 191:62–78.CrossRefGoogle Scholar
  5. 5.
    Khattri, R., T. Cox, S.A. Yasayko, and F. Ramsdell. 2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342.PubMedCrossRefGoogle Scholar
  6. 6.
    Jaeckel, E., M.A. Lipes, and H. von Boehmer. 2004. Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat Immunol 5:1028–1035.PubMedCrossRefGoogle Scholar
  7. 7.
    Nakayama, M., N. Abiru, H. Moriyama, N. Babaya, E. Liu, D. Miao, L. Yu, D.R. Wegmann, J.C. Hutton, J.F. Elliott, and G.S. Eisenbarth. 2005. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435:220–223.PubMedCrossRefGoogle Scholar
  8. 8.
    Itoh, M., T. Takahashi, N. Sakaguchi, Y. Kuniyasu, J. Shimizu, F. Otsuka, and S. Sakaguchi. 1999. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162:5317–5326.PubMedGoogle Scholar
  9. 9.
    Bruder, D., M. Probst-Kepper, A.M. Westendorf, R. Geffers, S. Beissert, K. Loser, H. von Boehmer, J. Buer, and W. Hansen. 2004. Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol 34:623–630.PubMedCrossRefGoogle Scholar
  10. 10.
    Huehn, J., K. Siegmund, J.C. Lehmann, C. Siewert, U. Haubold, M. Feuerer, G.F. Debes, J. Lauber, O. Frey, G.K. Przybylski, U. Niesner, M. de la Rosa, C.A. Schmidt, R. Brauer, J. Buer, A. Scheffold, and A. Hamann. 2004. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med 199:303–313.PubMedCrossRefGoogle Scholar
  11. 11.
    Hansen, W., K. Loser, A.M. Westendorf, D. Bruder, S. Pfoertner, C. Siewert, J. Huehn, S. Beissert, and J. Buer. 2006. G protein-coupled receptor 83 overexpression in naive CD4+CD25- T cells leads to the induction of Foxp3+ regulatory T cells in vivo. J Immunol 177:209–215.PubMedGoogle Scholar
  12. 12.
    Shimizu, J., S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi. 2002. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142.PubMedCrossRefGoogle Scholar
  13. 13.
    Bachmann, M.F., G. Kohler, B. Ecabert, T.W. Mak, and M. Kopf. 1999. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 163:1128–1131.PubMedGoogle Scholar
  14. 14.
    Liu, W., A.L. Putnam, Z. Xu-Yu, G.L. Szot, M.R. Lee, S. Zhu, P.A. Gottlieb, P. Kapranov, T.R. Gingeras, B.F. de St Groth, C. Clayberger, D.M. Soper, S.F. Ziegler, and J.A. Bluestone. 2006. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701–1711.PubMedCrossRefGoogle Scholar
  15. 15.
    Kretschmer, K., I. Apostolou, D. Hawiger, K. Khazaie, M.C. Nussenzweig, and H. von Boehmer. 2005. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6:1219–1227.PubMedCrossRefGoogle Scholar
  16. 16.
    Fontenot, J.D., J.P. Rasmussen, L.M. Williams, J.L. Dooley, A.G. Farr, and A.Y. Rudensky. 2005. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341.PubMedCrossRefGoogle Scholar
  17. 17.
    Wan, Y.Y., and R.A. Flavell. 2005. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 102:5126–5131.PubMedCrossRefGoogle Scholar
  18. 18.
    Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061.PubMedCrossRefGoogle Scholar
  19. 19.
    Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336.PubMedCrossRefGoogle Scholar
  20. 20.
    Jaeckel, E., H. von Boehmer, and M.P. Manns. 2005. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes 54:306–310.PubMedCrossRefGoogle Scholar
  21. 21.
    Tang, Q., K.J. Henriksen, M. Bi, E.B. Finger, G. Szot, J. Ye, E.L. Masteller, H. McDevitt, M. Bonyhadi, and J.A. Bluestone. 2004. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199:1455–1465.PubMedCrossRefGoogle Scholar
  22. 22.
    Tarbell, K.V., S. Yamazaki, K. Olson, P. Toy, and R.M. Steinman. 2004. CD25+ CD4+ T Cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199:1467–1477.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu, Y., M. Borde, V. Heissmeyer, M. Feuerer, A.D. Lapan, J.C. Stroud, D.L. Bates, L. Guo, A. Han, S.F. Ziegler, D. Mathis, C. Benoist, L. Chen, and A. Rao. 2006. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126:375–387.PubMedCrossRefGoogle Scholar
  24. 24.
    Marson, A., K. Kretschmer, G.M. Frampton, E.S. Jacobsen, J.K. Polansky, K.D. MacIsaac, S.S. Levine, E. Fraenkel, H. von Boehmer, and R.A. Young. 2007. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935.PubMedCrossRefGoogle Scholar
  25. 25.
    Bottini, N., T. Vang, F. Cucca, and T. Mustelin. 2006. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 18:207–213.PubMedCrossRefGoogle Scholar
  26. 26.
    von Boehmer, H. 2005. Mechanisms of suppression by suppressor T cells. Nat Immunol 6:338–344.CrossRefGoogle Scholar
  27. 27.
    von Boehmer, H. 2004. Selection of the T-cell repertoire: receptor-controlled checkpoints in T-cell development. Adv Immunol 84:201–238.CrossRefGoogle Scholar
  28. 28.
    Jordan, M.S., A. Boesteanu, A.J. Reed, A.L. Petrone, A.E. Holenbeck, M.A. Lerman, A. Naji, and A.J. Caton. 2001. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:301–306.PubMedCrossRefGoogle Scholar
  29. 29.
    Apostolou, I., A. Sarukhan, L. Klein, and H. von Boehmer. 2002. Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3:756–763.PubMedGoogle Scholar
  30. 30.
    Hsieh, C.S., Y. Liang, A.J. Tyznik, S.G. Self, D. Liggitt, and A.Y. Rudensky. 2004. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21:267–277.PubMedCrossRefGoogle Scholar
  31. 31.
    Derbinski, J., A. Schulte, B. Kyewski, and L. Klein. 2001. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2:1032–1039.PubMedCrossRefGoogle Scholar
  32. 32.
    Vafiadis, P., S.T. Bennett, J.A. Todd, J. Nadeau, R. Grabs, C.G. Goodyer, S. Wickramasinghe, E. Colle, and C. Polychronakos. 1997. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 15:289–292.PubMedCrossRefGoogle Scholar
  33. 33.
    Anderson, M.S., E.S. Venanzi, L. Klein, Z. Chen, S.P. Berzins, S.J. Turley, H. von Boehmer, R. Bronson, A. Dierich, C. Benoist, and D. Mathis. 2002. Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401.PubMedCrossRefGoogle Scholar
  34. 34.
    Liston, A., D.H. Gray, S. Lesage, A.L. Fletcher, J. Wilson, K.E. Webster, H.S. Scott, R.L. Boyd, L. Peltonen, and C.C. Goodnow. 2004. Gene dosage – limiting role of aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med 200:1015–1026.PubMedCrossRefGoogle Scholar
  35. 35.
    Anderson, M.S., E.S. Venanzi, Z. Chen, S.P. Berzins, C. Benoist, and D. Mathis. 2005. The cellular mechanism of aire control of T cell tolerance. Immunity 23:227–239.PubMedCrossRefGoogle Scholar
  36. 36.
    Tai, X., M. Cowan, L. Feigenbaum, and A. Singer. 2005. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6:152–162.PubMedCrossRefGoogle Scholar
  37. 37.
    Klein, L., K. Khazaie, and H. von Boehmer. 2003. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci USA 100:8886–8891.PubMedCrossRefGoogle Scholar
  38. 38.
    Hao, Y., N. Legrand, and A.A. Freitas. 2006. The clone size of peripheral CD8 T cells is regulated by TCR promiscuity. J Exp Med 203:1643–1649.PubMedCrossRefGoogle Scholar
  39. 39.
    Kretschmer, K., I. Apostolou, E. Jaeckel, K. Khazaie, and H. von Boehmer. 2006. Making regulatory T cells with defined antigen specificity: role in autoimmunity and cancer. Immunol Rev 212:163–169.PubMedCrossRefGoogle Scholar
  40. 40.
    Apostolou, I., and H. Von Boehmer. 2004. In vivo instruction of suppressor commitment in naive T cells. J Exp Med 199:1401–1408.PubMedCrossRefGoogle Scholar
  41. 41.
    Coombes, J. L., K. R. Siddiqui, C. V. Arancibia-Cárcamo, J. Hall, C. M. Sun, Y. Belkaid, and F. Powrie. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764.Google Scholar
  42. 42.
    Sun, C. M., J. A. Hall, R. B. Blank, N. Bouladoux, M. Oukka, J. R. Mora, and Y. Belkaid. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204:1775–1785.Google Scholar
  43. 43.
    von Boehmer, H. 2007. Oral tolerance: is it all retinoic acid? J Exp Med 204:1737–1739.Google Scholar
  44. 44.
    Mempel, T.R., M.J. Pittet, K. Khazaie, W. Weninger, R. Weissleder, H. von Boehmer, and U.H. von Andrian. 2006. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25:129–141.PubMedCrossRefGoogle Scholar
  45. 45.
    Fisson, S., G. Darrasse-Jeze, E. Litvinova, F. Septier, D. Klatzmann, R. Liblau, and B.L. Salomon. 2003. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med 198:737–746.PubMedCrossRefGoogle Scholar
  46. 46.
    Lahl, K., C. Loddenkemper, C. Drouin, J. Freyer, J. Arnason, G. Eberl, A. Hamann, H. Wagner, J. Huehn, and T. Sparwasser. 2007. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 204:57–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Kim, J.M., J.P. Rasmussen, and A.Y. Rudensky. 2007. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8:191–197.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Karsten Kretschmer
  • Irina Apostolou
  • Panos Verginis
  • Harald von Boehmer
    • 1
  1. 1.Harvard Medical SchoolDana-Farber Cancer Institute, Harvard UniversityMA 02115USA

Personalised recommendations