CD4+CD25+ Regulatory T Cell Therapy for the Induction of Clinical Transplantation Tolerance

  • David S. Game
  • Robert I. Lechler
  • Shuiping Jiang


The pursuit of transplantation tolerance is still in progress some 53 years after Medawar and colleagues’ first description. It has been established beyond doubt that regulatory T cells can confer donor-specific tolerance in mouse models of transplantation. However, this is crucially dependent on the strain combination, the organ transplanted and most importantly, the ratio of Tregs to alloreactive effector T cells. The ex-vivo expansion of Tregs is one solution to increase the number of alloantigen specific cells capable of suppressing the alloresponse. This technique has been used to demonstrate long term graft survival in mouse models, where ex-vivo expanded, alloantigen specific T cells are shown to preferentially migrate to, and proliferate in, the graft and draining lymph node. When such models are selected to test the role of the different allorecognition pathways for Treg induced graft survival, it appears that only a modest direct pathway alloresponse is sufficient to abrogate tolerance in immunocompetent mice. This remains the case when Tregs are expanded with both direct and indirect pathway allospecificity. Therefore, in human transplantation it is likely that depletion of the majority of direct pathway alloreactive T cells will be required to tip the balance in favour of regulation. Ex-vivo expansion of alloantigen specific, indirect pathway human Tregs, which can cross regulate the residual direct pathway has been established. Rapid expansion of these cells is possible, while they retain antigen specificity, suppressive properties and favourable homing markers. Furthermore, considerable progress has been made in the last few years to define which immunosuppressive drugs favour the expansion and function of Tregs. It is proposed that a trial of Treg therapy in combination with depletion of alloreactive T cells and short term immunosuppression is on the near horizon for human transplantation.


Graft Survival Drain Lymph Node Indirect Pathway Direct Pathway Tolerance Induction 


  1. 1.
    Jiang S, Lechler RI. Regulatory T cells in the control of transplantation tolerance and autoimmunity. Am J Trans. 2003; 3:516–24.CrossRefGoogle Scholar
  2. 2.
    Bluestone JA. Regulatory T-cell therapy: Is it ready for the clinic? Nat Rev Immunol. 2005 Apr; 5(4):343–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Gershon RK, Kondo K. Cell interactions in the induction of tolerance: The role of thymic lymphocytes. Immunology. 1970; 18:723–37.PubMedGoogle Scholar
  4. 4.
    Hall BM, Jelbart ME, Dorsch SE. Suppressor T cells in rats with prolonged cardiac allograft survival after treatment with cyclosporine. Transplantation. 1984 Jun; 37(6):595–600.PubMedCrossRefGoogle Scholar
  5. 5.
    Hall BM, Pearce NW, Gurley KE, Dorsch SE. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J Exp Med. 1990 Jan 1; 171(1):141–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995 Aug 1; 155(3):1151–64.PubMedGoogle Scholar
  7. 7.
    Game DS, Lechler RI. Pathways of allorecognition: Implications for transplantation tolerance. Trans Immunol. 2002; 10(2–3):101–8.CrossRefGoogle Scholar
  8. 8.
    Suchin EJ, Langmuir PB, Palmer E, Sayegh MH, Wells AD, Turka LA. Quantifying the frequency of alloreactive T cells in vivo: New answers to an old question. J Immunol. 2001; 166:973–81.PubMedGoogle Scholar
  9. 9.
    Lechler RI, Batchelor JR. Immunogenicity of retransplanted rat kidney allografts. Effect of inducing chimerism in the first recipient and quantitative studies on immunosuppression of the second recipient. J Exp Med. 1982a; 156(6):1835–41.Google Scholar
  10. 10.
    Baker RJ, Hernandez-Fuentes MP, Brookes PA, Chaudhry AN, Cook HT, Lechler RI. Assessment of the immunological contribution to chronic allograft nephropathy. J Immunol. 2001a; 167:7199–206.Google Scholar
  11. 11.
    Baker RJ, Hernandez-Fuentes MP, Brookes PA, Chaudhry AN, Lechler RI. The role of the allograft in the induction of donor-specific T cell hyporesponsiveness. Transplantation. 2001b; 72(3):480–5.Google Scholar
  12. 12.
    Ng WF, Hernandez-Fuentes MP, Baker RJ, Chaudhry AN, Lechler RI. Reversibility with interleukin 2 suggests that T cell anergy contribute to donor-specific hyporesponsiveness in renal transplant patients. J Am Soc Nephrol. 2002; 13(12):2983–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, et al. Human CD4+CD25+ T cells: A naturally occuring population of regulatory T cells. Blood. 2001; 98(9):2736–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Game DS, Hernandez-Fuentes MP, Chaudhry AN, Lechler RI. CD4+CD25+ regulatory T cells do not significantly contribute to direct pathway hyporesponsiveness in stable renal transplant patients. J Am Soc Nephrol. 2003; 14(6):1652–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Suciu-Foca N, Ciubbotaria R, Itescu S, Rose EA, Cortesini R. Indirect allorecognition of donor HLA-DR peptides in chronic rejection of heart allografts. Transplant proc. 1998; 30:3999–4000.PubMedCrossRefGoogle Scholar
  16. 16.
    Hornick P, Mason P, Baker R, Hernandez-Fuentes M, Frasca L, Lombardi G, et al. Significant frequencies of T cells with indirect specificity in heart graft recipients with chronic rejection. Circulation. 2000; 101:2405–16.PubMedGoogle Scholar
  17. 17.
    Salama AD, Najafian N, Clarkson MR, Harmon WE, Sayegh MH. Regulatory CD25+ T cells in human kidney transplant recipients. J Am Soc Nephrol. 2003; 14(6):1643–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, et al. Thymus and autommunity: Production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunological self-tolerance. J Immunol. 1999; 162:5317–26.PubMedGoogle Scholar
  19. 19.
    Thornton A, Shevach EM. CD4+CD25+ Immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998; 188:287–96.PubMedCrossRefGoogle Scholar
  20. 20.
    Game DS, Lechler RI. HLA-DR matching and immune regulation. Am J Trans. 2004; 4(10):1725–6.CrossRefGoogle Scholar
  21. 21.
    Baecher-Allan C, Viglietta V, Hafler DA. Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol. 2002 Dec 1; 169(11):6210–7.PubMedGoogle Scholar
  22. 22.
    Taams LS, Vukmanovic-Stejic M, Smith J, Dunne PJ, Fletcher JM, Plunkett FJ, et al. Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. Eur J Immunol. 2002 Jun; 32(6):1621–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Lechler RI, Garden OA, Turka LA. The complementary roles of deletion and regulation in transplantation tolerance. Nat Rev Immunol. 2003; 3:147–58.PubMedCrossRefGoogle Scholar
  24. 24.
    Li XC, Strom TB, Turka LA, Wells AD. T cell death and transplantation tolerance. Immunity. 2001b; 14:407–16.Google Scholar
  25. 25.
    Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR, et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol. 2001 Mar 15; 166(6):3789–96.PubMedGoogle Scholar
  26. 26.
    Kingsley CI, Karim M, Bushell AR, Wood KJ. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4 and IL10 dependent immunoregulation of alloresponses. J Immunol. 2002; 168:1080–6.PubMedGoogle Scholar
  27. 27.
    Qin S, Cobbold SP, Pope H, Elliot J, Kioussis D, Davies J, et al. Infectious transplantation tolerance. Science. 1993; 259:974.PubMedCrossRefGoogle Scholar
  28. 28.
    Davies JD, Leong LY, Mellor A, Cobbold SP, Waldmann H. T cell suppression in transplantation tolerance through linked recognition. J Immunol. 1996; 156(10):3602–7.PubMedGoogle Scholar
  29. 29.
    Graca L, Cobbold SP, Waldmann H. Identification of regulatory T cells in tolerated allografts. J Exp Med. 2002a Jun 17; 195(12):1641–6.Google Scholar
  30. 30.
    Taylor PA, Noelle RJ, Blazar BR. CD4+CD25+ Immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med. 2001; 193(11):1311–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002a May 15; 99(10):3493–9.Google Scholar
  32. 32.
    Jiang S, Camara NOS, Lombardi G, Lechler RI. Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex-vivo. Blood. 2003; 102(6):2180–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Jiang S, Tsang J, Game DS, Stevenson S, Lombardi G, Lechler RI. Generation and expansion of human CD4+ CD25+ regulatory T cells with indirect allospecificity: Potential reagents to promote donor-specific transplantation tolerance. Transplantation. 2006 Dec 27; 82(12):1738–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Jiang S, Tsang J, Tanriver Y, Leung E, Lechler R. In-vitro generated human CD4+CD25high regulatory T cells with indirect allospecificity as potential patient-specific reagents to promote donor-specific transplantation tolerance. Am J Transplant. 2007; 7(s2):173.Google Scholar
  35. 35.
    Golshayan D, Jiang S, Tsang J, Garin MI, Mottet C, Lechler RI. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood. 2007 Jan 15; 109(2):827–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Fisson S, Darrasse-Jeze G, Litvinova E, Septier F, Klatzmann D, Liblau R, et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med. 2003 Sep 1; 198(5):737–46.PubMedCrossRefGoogle Scholar
  37. 37.
    Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T Cells is antigen nonspecific. J Immunol. 2000; 164:183–90.PubMedGoogle Scholar
  38. 38.
    Mirenda V, Berton I, Read J, Cook T, Smith J, Dorling A, et al. Modified dendritic cells coexpressing self and allogeneic major histocompatability complex molecules: an efficient way to induce indirect pathway regulation. J Am Soc Nephrol. 2004 Apr; 15(4):987–97.PubMedCrossRefGoogle Scholar
  39. 39.
    Tsang J, Tanriver Y, Jiang S, Xue S, Stauss HJ, Bucy RP, et al. Conferring indirect allospecificity on CD4+CD25+ regulatory T cells by T cell receptor gene transfer: a novel strategy for the induction of transplanation tolerance. J Clin Invest. 2008, in press.Google Scholar
  40. 40.
    Xia G, He J, Zhang Z, Leventhal JR. Targeting acute allograft rejection by immunotherapy with ex vivo-expanded natural CD4+ CD25+ regulatory T cells. Transplantation. 2006 Dec 27; 82(12):1749–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Yamada A, Chandrakar A, Laufer TM, Gerth AJ, Sayegh MH, Auchincloss H. Recipient MHC class II expression is required to achieve long term survival of murine cardiac allografts after costimulatory blockade. J Immunol. 2001; 167:5522–6.PubMedGoogle Scholar
  42. 42.
    Tarbell KV, Petit L, Zuo X, Toy P, Luo X, Mqadmi A, et al. Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med. 2007 Jan 22; 204(1):191–201.PubMedCrossRefGoogle Scholar
  43. 43.
    Haribhai D, Lin W, Relland LM, Truong N, Williams CB, Chatila TA. Regulatory T cells dynamically control the primary immune response to foreign antigen. J Immunol. 2007 Mar 1; 178(5):2961–72.PubMedGoogle Scholar
  44. 44.
    Fucs R, Jesus JT, Souza Junior PH, Franco L, Vericimo M, Bellio M, et al. Frequency of natural regulatory CD4+CD25+ T lymphocytes determines the outcome of tolerance across fully mismatched MHC barrier through linked recognition of self and allogeneic stimuli. J Immunol. 2006 Feb 15; 176(4):2324–9.PubMedGoogle Scholar
  45. 45.
    Koenen HJ, Fasse E, Joosten I. CD27/CFSE-based ex vivo selection of highly suppressive alloantigen-specific human regulatory T cells. J Immunol. 2005 Jun 15; 174(12):7573–83.PubMedGoogle Scholar
  46. 46.
    Fernandez I, Zeiser R, Karsunky H, Kambham N, Beilhack A, Soderstrom K, et al. CD101 Surface expression discriminates potency among murine FoxP3+ regulatory T cells. J Immunol. 2007 Sep 1; 179(5):2808–14.Google Scholar
  47. 47.
    Bluestone JA, Thomson AW, Shevach EM, Weiner HL. What does the future hold for cell-based tolerogenic therapy? Nat Rev Immunol. 2007 Aug; 7(8):650–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Bushell A, Jones E, Gallimore A, Wood K. The generation of CD25+ CD4+ regulatory T cells that prevent allograft rejection does not compromise immunity to a viral pathogen. J Immunol. 2005 Mar 15; 174(6):3290–7.PubMedGoogle Scholar
  49. 49.
    Adams AB, Pearson TC, Larsen CP. Heterologous immunity: an overlooked barrier to tolerance. Immunol Rev. 2003 Dec; 196:147–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Neujahr DC, Chen C, Huang X, Markmann JF, Cobbold S, Waldmann H, et al. Accelerated memory cell homeostasis during T cell depletion and approaches to overcome it. J Immunol. 2006 Apr 15; 176(8):4632–9.PubMedGoogle Scholar
  51. 51.
    Pearl JP, Parris J, Hale DA, Hoffmann SC, Bernstein WB, McCoy KL, et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant. 2005 Mar; 5(3):465–74.PubMedCrossRefGoogle Scholar
  52. 52.
    Trzonkowski P, Zilvetti M, Friend P, Wood KJ. Recipient memory-like lymphocytes remain unresponsive to graft antigens after CAMPATH-1H induction with reduced maintenance immunosuppression. Transplantation. 2006 Nov 27; 82(10):1342–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Schwartz RH. Models of T cell anergy: is there a common molecular mechanism? J Exp Med. 1996 Jul 1; 184(1):1–8.Google Scholar
  54. 54.
    Macian F, Garcia-Cozar F, Im S-H, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 2002; 109:719–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Wells AD, Li XC, Li Y, Walsh MC, Zheng XX, Wu Z, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med. 1999 Nov; 5(11):1303–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Wekerle T, Kurtz J, Sayegh M, Ito H, Wells A, Bensinger S, et al. Peripheral deletion after bone marrow transplantation with costimulatory blockade has features of both activation-induced cell death and passive cell death. J Immunol. 2001 Feb 15; 166(4):2311–6.PubMedGoogle Scholar
  57. 57.
    Noris M, Casiraghi F, Todeschini M, Cravedi P, Cugini D, Monteferrante G, et al. Regulatory T cells and T cell depletion: Role of immunosuppressive drugs. J Am Soc Nephrol. 2007 Mar; 18(3):1007–18.PubMedCrossRefGoogle Scholar
  58. 58.
    Baan CC, van der Mast BJ, Klepper M, Mol WM, Peeters AM, Korevaar SS, et al. Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation. 2005 Jul 15; 80(1):110–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Tian L, Lu L, Yuan Z, Lamb JR, Tam PK. Acceleration of apoptosis in CD4+CD8+ thymocytes by rapamycin accompanied by increased CD4+CD25+ T cells in the periphery. Transplantation. 2004 Jan 27; 77(2):183–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Gao W, Lu Y, El Essawy B, Oukka M, Kuchroo VK, Strom TB. Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am J Transplant. 2007 Jul; 7(7):1722–32.PubMedCrossRefGoogle Scholar
  61. 61.
    Game DS, Hernandes-Fuentes MP, Lechler RI. Everolimus and basiliximab permit suppression by human CD4CD25 Cells in vitro. Am J Transplant. 2005; 5(3):454–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Knechtle SJ, Pirsch JD, H. Fechner J J, Becker BN, Friedl A, Colvin RB, et al. Campath-1H induction plus rapamycin monotherapy for renal transplantation: Results of a pilot study. Am J Transplant. 2003 Jun; 3(6):722–30.Google Scholar
  63. 63.
    Flechner SM, Goldfarb D, Solez K, Modlin CS, Mastroianni B, Savas K, et al. Kidney transplantation with sirolimus and mycophenolate mofetil-based immunosuppression: 5-year results of a randomized prospective trial compared to calcineurin inhibitor drugs. Transplantation. 2007 Apr 15; 83(7):883–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Sawicka E, Dubois G, Jarai G, Edwards M, Thomas M, Nicholls A, et al. The sphingosine 1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4+/CD25+ T-regulatory cells and enhances their functional activity. J Immunol. 2005 Dec 15; 175(12):7973–80.Google Scholar
  65. 65.
    Zheng XX, Sanchez-Fueyo A, Sho M, Domenig C, Sayegh MH, Strom TB. Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. Immunity. 2003a Oct; 19(4):503–14.Google Scholar
  66. 66.
    Koulmanda M, Budo E, Bonner-Weir S, Qipo A, Putheti P, Degauque N, et al. Modification of adverse inflammation is required to cure new-onset type 1 diabetic hosts. Proc Natl Acad Sci USA. 2007 Aug 7; 104(32):13074–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007 Jul 26; 448(7152): 484–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Karim M, Feng G, Wood KJ, Bushell AR. CD25+CD4+ regulatory T cells generated by exposure to a model protein antigen prevent allograft rejection: Antigen-specific reactivation in vivo is critical for bystander regulation. Blood. 2005 Jun 15; 105(12):4871–7.Google Scholar
  69. 69.
    Newell KA, Larsen CP. Tolerance assays: Measuring the unknown. Transplantation. 2006 Jun 15; 81(11):1503–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med. 2005 Dec 1; 353(22): 2342–51.Google Scholar
  71. 71.
    Langan LL, Park LP, Hughes TL, Irish A, Luxton G, Witt CS, et al. Post-transplant HLA class II antibodies and high soluble CD30 levels are independently associated with poor kidney graft survival. Am J Transplant. 2007 Apr; 7(4):847–56.PubMedCrossRefGoogle Scholar
  72. 72.
    Kowalski RJ, Post DR, Mannon RB, Sebastian A, Wright HI, Sigle G, et al. Assessing relative risks of infection and rejection: A meta-analysis using an immune function assay. Transplantation. 2006 Sep 15; 82(5):663–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Martinez-Llordella M, Puig-Pey I, Orlando G, Ramoni M, Tisone G, Rimola A, et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant. 2007 Feb; 7(2):309–19.PubMedCrossRefGoogle Scholar
  74. 74.
    VanBuskirk AM, Burlingham WJ, Jankowska-Gan E, Chin T, Kusaka S, Geissler F, et al. Human allograft acceptance is associated with immune regulation. J Clin Invest. 2000 Jul; 106(1):145–55.Google Scholar
  75. 75.
    Warnecke G, Chapman SJ, Bushell A, Hernandez-Fuentes M, Wood KJ. Dependency of the trans vivo delayed type hypersensitivity response on the action of regulatory T cells: Implications for monitoring transplant tolerance. Transplantation. 2007 Aug 15; 84(3):392–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003 Apr; 4(4):330–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Shimizu J, Yamazaki S, Takahashi T, Yasumasa I, Sakaguchi S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002; 3(2):135–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000 Jul 17; 192(2):303–10.PubMedCrossRefGoogle Scholar
  79. 79.
    Fu S, Yopp AC, Mao X, Chen D, Zhang N, Mao M, et al. CD4+ CD25+ CD62+ T-regulatory cell subset has optimal suppressive and proliferative potential. Am J Transplant. 2004 Jan; 4(1):65–78.Google Scholar
  80. 80.
    Zeiser R, Nguyen VH, Hou JZ, Beilhack A, Zambricki E, Buess M, et al. Early CD30 signaling is critical for adoptively transferred CD4+CD25+ regulatory T cells in prevention of acute graft-versus-host disease. Blood. 2007 Mar 1; 109(5):2225–33.PubMedCrossRefGoogle Scholar
  81. 81.
    Banz A, Peixoto A, Pontoux C, Cordier C, Rocha B, Papiernik M. A unique subpopulation of CD4+ regulatory T cells controls wasting disease, IL-10 secretion and T cell homeostasis. Eur J Immunol. 2003 Sep; 33(9):2419–28.PubMedCrossRefGoogle Scholar
  82. 82.
    Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med. 2001 Sep 17; 194(6):847–53.Google Scholar
  83. 83.
    Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, Taylor PA, McKinnon KP, Su L, et al. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood. 2005 Nov 1; 106(9):3300–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Kleinewietfeld M, Puentes F, Borsellino G, Battistini L, Rotzschke O, Falk K. CCR6 expression defines regulatory effector/memory-like cells within the CD25(+)CD4+ T-cell subset. Blood. 2005 Apr 1; 105(7):2877–86.PubMedCrossRefGoogle Scholar
  85. 85.
    Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood. 2007 Mar 1; 109(5):2058–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David S. Game
  • Robert I. Lechler
  • Shuiping Jiang
    • 1
  1. 1.Department of Nephrology and TransplantationGuy’s Hospital, King’s College LondonUK

Personalised recommendations