Natural CD4+CD25+ Regulatory T Cells in Regulation of Autoimmune Disease

  • Adam P. Kohm
  • Stephen D. Miller


An essential characteristic of thymic T cell development is the generation of TCR diversity enabling T cells to respond to an unlimited number of foreign antigens. However, one inevitable consequence of TCR diversity is the generation of self-reactive TCRs creating the potential for autoimmune disease. To balance this, the immune system has developed the processes of central and peripheral tolerance to deter the generation of self-reactive T cells as well as to regulate the function of autoreactive T cells that persist in the mature T cell repertoire, respectively. We’ll discuss here one critical mediator of peripheral tolerance, CD4+CD25+ regulatory or suppressor T cells, and their role in regulating the various processes of autoimmune disease.


Multiple Sclerosis Rheumatoid Arthritis Patient Central Tolerance Cell Effector Function Regulatory Cell Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adriani, M., Aoki, J., Horai, R., Thornton, A. M., Konno, A., Kirby, M., Anderson, S. M., Siegel, R. M., Candotti, F., and Schwartzberg, P. L. (2007). Impaired in vitro regulatory T cell function associated with Wiskott-Aldrich syndrome. Clin. Immunol. 124:41–48.PubMedCrossRefGoogle Scholar
  2. 2.
    Alyanakian, M. A., You, S., Damotte, D., Gouarin, C., Esling, A., Garcia, C., Havouis, S., Chatenoud, L., and Bach, J. F. (2003). Diversity of regulatory CD4+T cells controlling distinct organ-specific autoimmune diseases. Proc. Natl. Acad. Sci. U.S.A. 100:15806–15811.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson, M. S., and Bluestone, J. A. (2005). The NOD mouse: A model of immune dysregulation. Ann. Rev. Immunol. 23:447–485.CrossRefGoogle Scholar
  4. 4.
    Baecher-Allan, C., Brown, J. A., Freeman, G. J., and Hafler, D. A. (2001). CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 167:1245–1253.PubMedGoogle Scholar
  5. 5.
    Bernard, C. C., and de Rosbo, N. K. (1991). Immunopathological recognition of autoantigens in multiple sclerosis. Acta Neurol. 13:171–178.Google Scholar
  6. 6.
    Cao, D., Malmstrom, V., Baecher-Allan, C., Hafler, D., Klareskog, L., and Trollmo, C. (2003). Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur. J. Immunol. 33:215–223.PubMedCrossRefGoogle Scholar
  7. 7.
    Cohen, P. L. (1993). T- and B-cell abnormalities in systemic lupus. J. Invest. Dermatol. 100:69S–72S.PubMedCrossRefGoogle Scholar
  8. 8.
    Crispin, J. C., Martinez, A., and Alcocer-Varela, J. (2003). Quantification of regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun. 21:273–276.PubMedCrossRefGoogle Scholar
  9. 9.
    de Rosbo, N. K., Hoffman, M., Mendel, I., Yust, I., Kaye, J., Bakimer, R., Flechter, S., Abramsky, O., Milo, R., Karni, A., and Ben-Nun, A. (1997). Predominance of the autoimmune response to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis: Reactivity to the extracellular domain of MOG is directed against three main regions. Eur. J. Immunol. 27:3059–3069.CrossRefGoogle Scholar
  10. 10.
    Deshpande, P., King, I. L., and Segal, B. M. (2007). Cutting edge: CNS CD11c+ cells from mice with encephalomyelitis polarize Th17 cells and support CD25+CD4+ T cell-mediated immunosuppression, suggesting dual roles in the disease process. J. Immunol. 178: 6695–6699.PubMedGoogle Scholar
  11. 11.
    Dupuis-Girod, S., Medioni, J., Haddad, E., Quartier, P., Cavazzana-Calvo, M., Le Deist, F., de Saint Basile, G., Delaunay, J., Schwarz, K., Casanova, J. L., et al. (2003). Autoimmunity in Wiskott-Aldrich syndrome: Risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics 111:e622–627.PubMedCrossRefGoogle Scholar
  12. 12.
    Ebers, G. C., Sadovnick, A. D., and Risch, N. J. (1995). A genetic basis for familial aggregation in multiple sclerosis. Nature 377:150–151.PubMedCrossRefGoogle Scholar
  13. 13.
    Ehrenstein, M. R., Evans, J. G., Singh, A., Moore, S., Warnes, G., Isenberg, D. A., and Mauri, C. (2004). Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J. Exp. Med. 200:277–285.PubMedCrossRefGoogle Scholar
  14. 14.
    Ermann, J., Hoffmann, P., Edinger, M., Dutt, S., Blankenberg, F. G., Higgins, J. P., Negrin, R. S., Fathman, C. G., and Strober, S. (2005). Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 105:2220–2226.PubMedCrossRefGoogle Scholar
  15. 15.
    Fahlen, L., Read, S., Gorelik, L., Hurst, S. D., Coffman, R. L., Flavell, R. A., and Powrie, F. (2005). T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. J. Exp. Med. 201:737–746.PubMedCrossRefGoogle Scholar
  16. 16.
    Fantini, M. C., Becker, C., Monteleone, G., Pallone, F., Galle, P. R., and Neurath, M. F. (2004). Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25– T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172:5149–5153.PubMedGoogle Scholar
  17. 17.
    Franz, B., Fritzsching, B., Riehl, A., Oberle, N., Klemke, C. D., Sykora, J., Quick, S., Stumpf, C., Hartmann, M., Enk, A., et al. (2007). Low number of regulatory T cells in skin lesions of patients with cutaneous lupus erythematosus. Arthritis Rheum. 56:1910–1920.PubMedCrossRefGoogle Scholar
  18. 18.
    Fujinami, R. S., and Oldstone, M. B. (1985). Amino acid homology between the encephalitogenic site of myelin basic protein and virus: Mechanism for autoimmunity. Science 230: 1043–1045.PubMedCrossRefGoogle Scholar
  19. 19.
    Furtado, G. C., Olivares-Villagomez, D., Curotto de Lafaille, M. A., Wensky, A. K., Latkowski, J. A., and Lafaille, J. J. (2001). Regulatory T cells in spontaneous autoimmune encephalomyelitis. Immunol. Rev. 182:122–134.PubMedCrossRefGoogle Scholar
  20. 20.
    Green, E. A., Gorelik, L., McGregor, C. M., Tran, E. H., and Flavell, R. A. (2003). CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc. Natl. Acad. Sci. U.S.A. 100:10878–10883.PubMedCrossRefGoogle Scholar
  21. 21.
    Humblet-Baron, S., Sather, B., Anover, S., Becker-Herman, S., Kasprowicz, D. J., Khim, S., Nguyen, T., Hudkins-Loya, K., Alpers, C. E., Ziegler, S. F., et al. (2007). Wiskott-Aldrich syndrome protein is required for regulatory T cell homeostasis. J. Clin. Invest. 117: 407–418.PubMedCrossRefGoogle Scholar
  22. 22.
    Kent, S. C., Chen, Y., Bregoli, L., Clemmings, S. M., Kenyon, N. S., Ricordi, C., Hering, B. J., and Hafler, D. A. (2005). Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 435:224–228.PubMedCrossRefGoogle Scholar
  23. 23.
    Kohm, A. P., Carpentier, P. A., Anger, H. A., and Miller, S. D. (2002). Cutting Edge: CD4(+)CD25(+) regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169:4712–4716.PubMedGoogle Scholar
  24. 24.
    Kohm, A. P., Carpentier, P. A., and Miller, S. D. (2003). Regulation of experimental autoimmune encephalomyelitis (EAE) by CD4+CD25+ regulatory T cells. Novartis Found. Symp. 252:45–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Kohm, A. P., McMahon, J. S., Podojil, J. R., Smith Begolka, W., DeGutes, M., Kasprowicz, D. J., Ziegler, S. F., and Miller, S. D. (2006). Cutting Edge: Anti-CD25 mAb injection results in the functional inactivation, not depletion of CD4+CD25+ Treg cells. J. Immunol. 176:3301–3305.PubMedGoogle Scholar
  26. 26.
    Kohm, A. P., Williams, J. S., Bickford, A. L., McMahon, J. S., Chatenoud, L., Bach, J. F., Bluestone, J. A., and Miller, S. D. (2005). Treatment with nonmitogenic anti-CD3 monoclonal antibody induces CD4+ T cell unresponsiveness and functional reversal of established experimental autoimmune encephalomyelitis. J. Immunol. 174:4525–4534.PubMedGoogle Scholar
  27. 27.
    Koonpaew, S., Shen, S., Flowers, L., and Zhang, W. (2006). LAT-mediated signaling in CD4+CD25+ regulatory T cell development. J. Exp. Med. 203:119–129.PubMedCrossRefGoogle Scholar
  28. 28.
    Kurtzke, J. F. (1993). Epidemiologic evidence for multiple sclerosis as an infection. Clin. Microbiol. Rev. 6:382–427.PubMedGoogle Scholar
  29. 29.
    Lahl, K., Loddenkemper, C., Drouin, C., Freyer, J., Arnason, J., Eberl, G., Hamann, A., Wagner, H., Huehn, J., and Sparwasser, T. (2007). Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204:57–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Lan, R. Y., Ansari, A. A., Lian, Z. X., and Gershwin, M. E. (2005). Regulatory T cells: Development, function and role in autoimmunity. Autoimmun. Rev. 4:351–363.PubMedCrossRefGoogle Scholar
  31. 31.
    Leipe, J., Skapenko, A., Lipsky, P. E., and Schulze-Koops, H. (2005). Regulatory T cells in rheumatoid arthritis. Arthritis Res. Ther. 7:93.PubMedCrossRefGoogle Scholar
  32. 32.
    Lipsky, P. E., van der Heijde, D. M., St Clair, E. W., Furst, D. E., Breedveld, F. C., Kalden, J. R., Smolen, J. S., Weisman, M., Emery, P., Feldmann, M., et al. (2000). Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N. Engl. J. Med. 343:1594–1602.PubMedCrossRefGoogle Scholar
  33. 33.
    Lohmann, T., Leslie, R. D., and Londei, M. (1996). T cell clones to epitopes of glutamic acid decarboxylase 65 raised from normal subjects and patients with insulin-dependent diabetes. J. Autoimmun. 9:385–389.PubMedCrossRefGoogle Scholar
  34. 34.
    Luo, X., Tarbell, K. V., Yang, H., Pothoven, K., Bailey, S. L., Ding, R., Steinman, R. M., and Suthanthiran, M. (2007). Dendritic cells with TGF-{beta}1 differentiate naive CD4+CD25– T cells into islet-protective Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. U.S.A. 104: 2821–2826.Google Scholar
  35. 35.
    McGeachy, M. J., Stephens, L. A., and Anderton, S. M. (2005). Natural recovery and protection from autoimmune encephalomyelitis: Contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol. 175:3025–3032.PubMedGoogle Scholar
  36. 36.
    McHugh, R. S., and Shevach, E. M. (2002). Cutting edge: Depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J. Immunol. 168:5979–5983.PubMedGoogle Scholar
  37. 37.
    McRae, B. L., Vanderlugt, C. L., Dal Canto, M. C., and Miller, S. D. (1995). Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med. 182:75–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Mellanby, R. J., Thomas, D., Phillips, J. M., and Cooke, A. (2007). Diabetes in non-obese diabetic mice is not associated with quantitative changes in CD4+ CD25+ Foxp3+ regulatory T cells. Immunology 121:15–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Mills, J. A. (1994). Systemic lupus erythematosus. N. Engl. J. Med. 330:1871–1879.PubMedCrossRefGoogle Scholar
  40. 40.
    Muller-Ladner, U., Pap, T., Gay, R. E., Neidhart, M., and Gay, S. (2005). Mechanisms of disease: The molecular and cellular basis of joint destruction in rheumatoid arthritis. Nature Clin. Pract. Rheumatol. 1:102–110.CrossRefGoogle Scholar
  41. 41.
    Nadkarni, S., Mauri, C., and Ehrenstein, M. R. (2007). Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. J. Exp. Med. 204:33–39.PubMedCrossRefGoogle Scholar
  42. 42.
    Nakayama, M., Abiru, N., Moriyama, H., Babaya, N., Liu, E., Miao, D. M., Yu, L. P., Wegmann, D. R., Hutton, J. C., Elliott, J. F., and Eisenbarth, G. S. (2005). Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435: 220–223.PubMedCrossRefGoogle Scholar
  43. 43.
    Olson, J. K., Croxford, J. L., Calenoff, M., Dal Canto, M. C., and Miller, S. D. (2001a). A virus-induced molecular mimicry model of multiple sclerosis. J. Clin. Invest. 108:311–318.Google Scholar
  44. 44.
    Olson, J. K., Croxford, J. L., and Miller, S. D. (2001b). Virus-induced autoimmunity: Potential role of viruses in initiation, perpetuation, and progression of T cell-mediated autoimmune diseases Viral Immunol. 14 227–250.Google Scholar
  45. 45.
    Ota, K., Matsui, M., Milford, E. L., Mackin, G. A., Weiner, H. L., and Hafler, D. A. (1990). T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346:183–187.PubMedCrossRefGoogle Scholar
  46. 46.
    Peng, Y., Laouar, Y., Li, M. O., Green, E. A., and Flavell, R. A. (2004). TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc. Natl. Acad. Sci. U.S.A. 101:4572–4577.PubMedCrossRefGoogle Scholar
  47. 47.
    Reddy, J., Illes, Z., Zhang, X., Encinas, J., Pyrdol, J., Nicholson, L., Sobel, R. A., Wucherpfennig, K. W., and Kuchroo, V. K. (2004). Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 101:15434–15439.PubMedCrossRefGoogle Scholar
  48. 48.
    Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6:345–352.PubMedCrossRefGoogle Scholar
  49. 49.
    Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., Fehervari, Z., Shimizu, J., Takahashi, T., and Nomura, T. (2006). Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 212:8–27.PubMedCrossRefGoogle Scholar
  50. 50.
    Tang, Q., and Bluestone, J. A. (2006). Regulatory T-cell physiology and application to treat autoimmunity. Immunol. Rev. 212:217–237.PubMedCrossRefGoogle Scholar
  51. 51.
    Tarbell, K. V., Petit, L., Zuo, X., Toy, P., Luo, X., Mqadmi, A., Yang, H., Suthanthiran, M., Mojsov, S., and Steinman, R. M. (2007). Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J. Exp. Med. 204:191–201.PubMedCrossRefGoogle Scholar
  52. 52.
    Taylor, P. A., Panoskaltsis-Mortari, A., Swedin, J. M., Lucas, P. J., Gress, R. E., Levine, B. L., June, C. H., Serody, J. S., and Blazar, B. R. (2004). L-Selectin(hi) but not the L-selectin(lo) CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 104:3804–3812.PubMedCrossRefGoogle Scholar
  53. 53.
    Vanderlugt, C. L., and Miller, S. D. (2002). Epitope spreading in immune-mediated diseases: Implications for immunotherapy. Nat. Rev. Immunol. 2:85–95.PubMedCrossRefGoogle Scholar
  54. 54.
    Viglietta, V., Baecher-Allan, C., Weiner, H. L., and Hafler, D. A. (2004). Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199:971–979.PubMedCrossRefGoogle Scholar
  55. 55.
    von Boehmer, H. (2005). Mechanisms of suppression by suppressor T cells. Nat. Immunol. 6:338–344.CrossRefGoogle Scholar
  56. 56.
    Waksman, B. H. (1995). Multiple sclerosis: More genes versus environment. Nature 377: 105–106.PubMedCrossRefGoogle Scholar
  57. 57.
    Wekerle, H. (1991). Immunopathogenesis of multiple sclerosis. Acta Neurol. 13:197–204.Google Scholar
  58. 58.
    Wong, F. S., and Janeway, C. A. (1999). Insulin-dependent diabetes mellitus and its animal models. Curr. Opin. Immunol. 11:643–647.PubMedCrossRefGoogle Scholar
  59. 59.
    Wucherpfennig, K. W., and Strominger, J. L. (1995). Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:695–705.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Microbiology-Immunology and Interdepartmental Immunobiology CenterFeinberg School of Medicine, Northwestern UniversityChicagoUSA

Personalised recommendations