Advertisement

Regulatory T Cells and the Control of Auto-Immunity: From day 3 Thymectomy to FoxP3+ Regulatory T Cells

  • Makoto Miyara
  • Shimon Sakaguchi
Chapter

Abstract

Regulatory T-cell population is now widely accepted as an important component of the immune system as professional suppressors of immune responses. It was shown in the late sixties that some CD4+ T cells in normal mice were capable of suppressing autoimmunity. Efforts to characterize this autoimmune-suppressive CD4+ T cell population led to the identification of CD25 as a constitutional marker. Using this marker, it became possible to separate regulatory T cells from other CD4+ T cells, to further analyze their developmental pathways, especially in the thymus, and to better describe how they suppress immune responses in vivo and in vitro. The marker was also found to be useful to identify regulatory T cells with comparable suppressive function and phenotype in humans. It was recently shown that transcription factor Foxp3 was specifically expressed by CD25+ CD4+ regulatory T cells in rodents. Anomalies in FOXP3 gene are responsible for the development of an autoimmune and inflammatory disease in humans and rodents characterized by a deficiency in the development and function of CD25+CD4+ regulatory T cells. These recent findings provide clear evidence that Foxp3+CD25+CD4+ regulatory T cells are indispensable for the establishment and the maintenance of immunologic self-tolerance and immune homeostasis. Therefore, characterization of regulatory T cell mediated immune suppression should bring new clinical tools to control pathological immune responses.

Keywords

Treg Cell Clonal Deletion Treg Population Autoimmune Gastritis Autoimmune Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ehrlich P, Morgenroth J. Über Hämolysine. Dritte Mittheilung. Berl Klin Wochenschr 1900; 37:453–8.Google Scholar
  2. 2.
    Hengartner H, Odermatt B, Schneider R, et al. Deletion of self-reactive T cells before entry into the thymus medulla. Nature 1988; 336(6197):388–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Kappler JW, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell 1987; 49(2):273–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Kisielow P, Teh HS, Bluthmann H, von Boehmer H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 1988; 335(6192):730–3.CrossRefGoogle Scholar
  5. 5.
    Marusic-Galesic S, Stephany DA, Longo DL, Kruisbeek AM. Development of CD4–CD8+ cytotoxic T cells requires interactions with class I MHC determinants. Nature 1988; 333(6169):180–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002; 298(5597):1395–401.PubMedCrossRefGoogle Scholar
  7. 7.
    Liston A, Gray DH, Lesage S, et al. Gene dosage – limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med 2004; 200(8):1015–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol 2003; 4(4):350–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Nagamine K, Peterson P, Scott HS, et al. Positional cloning of the APECED gene. Nat Genet 1997; 17(4):393–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu Y, Janeway CA, Jr. Interferon gamma plays a critical role in induced cell death of effector T cell: a possible third mechanism of self-tolerance. J Exp Med 1990; 172(6):1735–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Alderson MR, Armitage RJ, Maraskovsky E, et al. Fas transduces activation signals in normal human T lymphocytes. J Exp Med 1993; 178(6):2231–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Fisher GH, Rosenberg FJ, Straus SE, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995; 81(6): 935–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW. Autoreactive T cells in healthy individuals. J Immunol 2004; 172(10):5967–72.PubMedGoogle Scholar
  14. 14.
    Claman HN, Chaperon EA, Triplett RF. Thymus-marrow cell combinations. Synergism in antibody production. Proc Soc Exp Biol Med 1966; 122(4):1167–71.PubMedGoogle Scholar
  15. 15.
    Leuchars E, Morgan A, Davies AJ, Wallis VJ. Thymus grafts in thymectomized and normal mice. Nature 1967; 214(90):801–2.PubMedCrossRefGoogle Scholar
  16. 16.
    Mitchell GF, Miller JF. Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med 1968; 128(4):821–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Nishizuka Y, Sakakura T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969; 166(906):753–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970; 18(5):723–37.PubMedGoogle Scholar
  19. 19.
    Gershon RK, Kondo K. Infectious immunological tolerance. Immunology 1971; 21(6): 903–14.PubMedGoogle Scholar
  20. 20.
    Gershon RK, Cohen P, Hencin R, Liebhaber SA. Suppressor T cells. J Immunol 1972; 108(3):586–90.PubMedGoogle Scholar
  21. 21.
    Sakaguchi S, Takahashi T, Nishizuka Y. Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J Exp Med 1982; 156(6):1565–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 1985; 161(1):72–87.PubMedCrossRefGoogle Scholar
  23. 23.
    Penhale WJ, Farmer A, McKenna RP, Irvine WJ. Spontaneous thyroiditis in thymectomized and irradiated Wistar rats. Clin Exp Immunol 1973; 15(2):225–36.PubMedGoogle Scholar
  24. 24.
    Penhale WJ, Stumbles PA, Huxtable CR, Sutherland RJ, Pethick DW. Induction of diabetes in PVG/c strain rats by manipulation of the immune system. Autoimmunity 1990; 7(2–3): 169–79.PubMedCrossRefGoogle Scholar
  25. 25.
    Powrie F, Mason D. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J Exp Med 1990; 172(6):1701–8.PubMedCrossRefGoogle Scholar
  26. 26.
    McKeever U, Mordes JP, Greiner DL, et al. Adoptive transfer of autoimmune diabetes and thyroiditis to athymic rats. Proc Natl Acad Sci USA 1990; 87(19):7618–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 1993; 5(11):1461–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Fowell D, Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med 1993; 177(3):627–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7:145–73.PubMedCrossRefGoogle Scholar
  30. 30.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136(7):2348–57.PubMedGoogle Scholar
  31. 31.
    Coffman RL, Shrader B, Carty J, Mosmann TR, Bond MW. A mouse T cell product that preferentially enhances IgA production. I. Biologic characterization. J Immunol 1987; 139(11):3685–90.PubMedGoogle Scholar
  32. 32.
    Fernandez-Botran R, Sanders VM, Mosmann TR, Vitetta ES. Lymphokine-mediated regulation of the proliferative response of clones of T helper 1 and T helper 2 cells. J Exp Med 1988; 168(2):543–58.PubMedCrossRefGoogle Scholar
  33. 33.
    Tada T, Taniguchi M, David CS. Properties of the antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. IV. Special subregion assignment of the gene(s) that codes for the suppressive T-cell factor in the H-2 histocompatibility complex. J Exp Med 1976; 144(3):713–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Asherson GL, Zembala M. The role of the T acceptor cell in suppressor systems. Antigen-specific T suppressor factor acts via a T acceptor cell; this releases a nonspecific inhibitor of the transfer of contact sensitivity when exposed to antigen in the context of I-J. Ann NY Acad Sci 1982; 392:71–89.PubMedCrossRefGoogle Scholar
  35. 35.
    Steinmetz M, Minard K, Horvath S, et al. A molecular map of the immune response region from the major histocompatibility complex of the mouse. Nature 1982; 300(5887):35–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Kronenberg M, Steinmetz M, Kobori J, et al. RNA transcripts for I-J polypeptides are apparently not encoded between the I-A and I-E subregions of the murine major histocompatibility complex. Proc Natl Acad Sci USA 1983; 80(18):5704–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Rocken M, Shevach EM. Immune deviation – the third dimension of nondeletional T cell tolerance. Immunol Rev 1996; 149:175–94.Google Scholar
  38. 38.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155(3):1151–64.PubMedGoogle Scholar
  39. 39.
    Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 1996; 184(2):387–96.PubMedCrossRefGoogle Scholar
  40. 40.
    Thornton AM, Piccirillo CA, Shevach EM. Activation requirements for the induction of CD4+CD25+ T cell suppressor function. Eur J Immunol 2004; 34(2):366–76.PubMedCrossRefGoogle Scholar
  41. 41.
    Takahashi T, Kuniyasu Y, Toda M, et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998; 10(12):1969–80.PubMedCrossRefGoogle Scholar
  42. 42.
    Herbelin A, Gombert JM, Lepault F, Bach JF, Chatenoud L. Mature mainstream TCR alpha beta+CD4+ thymocytes expressing L-selectin mediate “active tolerance” in the nonobese diabetic mouse. J Immunol 1998; 161(5):2620–8.PubMedGoogle Scholar
  43. 43.
    Lepault F, Gagnerault MC. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J Immunol 2000; 164(1):240–7.PubMedGoogle Scholar
  44. 44.
    Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000; 12(4):431–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Chatenoud L, Salomon B, Bluestone JA. Suppressor T cells – they're back and critical for regulation of autoimmunity! Immunol Rev 2001; 182:149–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Szanya V, Ermann J, Taylor C, Holness C, Fathman CG. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J Immunol 2002; 169(5):2461–5.PubMedGoogle Scholar
  47. 47.
    Thompson CB, Allison JP. The emerging role of CTLA-4 as an immune attenuator. Immunity 1997; 7(4):445–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995; 270(5238):985–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000; 192(2):295–302.PubMedCrossRefGoogle Scholar
  50. 50.
    Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192(2):303–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002; 3(2):135–42.PubMedCrossRefGoogle Scholar
  52. 52.
    McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002; 16(2):311–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Stephens GL, McHugh RS, Whitters MJ, et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol 2004; 173(8):5008–20.PubMedGoogle Scholar
  54. 54.
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J Immunol 2001; 167(3):1245–53.PubMedGoogle Scholar
  55. 55.
    Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 2001; 193(11):1303–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001; 193(11):1285–94.PubMedCrossRefGoogle Scholar
  57. 57.
    Ng WF, Duggan PJ, Ponchel F, et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood 2001; 98(9):2736–44.PubMedCrossRefGoogle Scholar
  58. 58.
    Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN. Human anergic/ suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 2001; 31(4):1122–31.PubMedCrossRefGoogle Scholar
  59. 59.
    Levings MK, Sangregorio R, Roncarolo MG. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001; 193(11):1295–302.PubMedCrossRefGoogle Scholar
  60. 60.
    Powell BR, Buist NR, Stenzel P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 1982; 100(5):731–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Godfrey VL, Wilkinson JE, Russell LB. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol 1991; 138(6):1379–87.PubMedGoogle Scholar
  62. 62.
    Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27(1):20–1.PubMedCrossRefGoogle Scholar
  63. 63.
    Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27(1):68–73.PubMedCrossRefGoogle Scholar
  64. 64.
    Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27(1): 18–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 2001; 276(40):37672–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4(4):330–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609):1057–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4(4):337–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Fontenot JD, Dooley JL, Farr AG, Rudensky AY. Developmental regulation of Foxp3 expression during ontogeny. J Exp Med 2005; 202(7):901–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA 2005; 102(14):5138–43.PubMedCrossRefGoogle Scholar
  71. 71.
    Wu Y, Borde M, Heissmeyer V, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006; 126(2):375–87.PubMedCrossRefGoogle Scholar
  72. 72.
    Sugimoto N, Oida T, Hirota K, et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol 2006; 18(8):1197–209.PubMedCrossRefGoogle Scholar
  73. 73.
    Marson A, Kretschmer K, Frampton GM, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007; 445(7130):931–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007; 445(7129):771–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007; 445(7130): 936–40.PubMedCrossRefGoogle Scholar
  76. 76.
    Aschenbrenner K, D'Cruz LM, Vollmann EH, et al. Selection of Foxp3(+) regulatory T cells specific for self antigen expressed and presented by Aire(+) medullary thymic epithelial cells. Nat Immunol 2007 Apr; 8(4):351–8.Google Scholar
  77. 77.
    Kekalainen E, Tuovinen H, Joensuu J, et al. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Immunol 2007; 178(2):1208–15.PubMedGoogle Scholar
  78. 78.
    Kriegel MA, Lohmann T, Gabler C, Blank N, Kalden JR, Lorenz HM. Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J Exp Med 2004; 199(9):1285–91.PubMedCrossRefGoogle Scholar
  79. 79.
    Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 2005; 54(5):1407–14.PubMedCrossRefGoogle Scholar
  80. 80.
    Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 2005; 54(1): 92–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Kukreja A, Cost G, Marker J, et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 2002; 109(1):131–40.PubMedGoogle Scholar
  82. 82.
    Brusko T, Wasserfall C, McGrail K, et al. No Alterations in the Frequency of FOXP3+ Regulatory T-Cells in Type 1 Diabetes. Diabetes 2007; 56(3):604–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Gavin MA, Torgerson TR, Houston E, et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA 2006; 103(17):6659–64.PubMedCrossRefGoogle Scholar
  84. 84.
    Allan SE, Crome SQ, Crellin NK, et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 2007 Apr; 19(4):345–54.Google Scholar
  85. 85.
    Uhlig HH, Coombes J, Mottet C, et al. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J Immunol 2006; 177(9):5852–60.PubMedGoogle Scholar
  86. 86.
    Maul J, Loddenkemper C, Mundt P, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology 2005; 128(7):1868–78.PubMedCrossRefGoogle Scholar
  87. 87.
    Crispin JC, Martinez A, Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun 2003; 21(3):273–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Miyara M, Amoura Z, Parizot C, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol 2005; 175(12):8392–400.PubMedGoogle Scholar
  89. 89.
    Liu MF, Wang CR, Fung LL, Wu CR. Decreased CD4+CD25+ T cells in peripheral blood of patients with systemic lupus erythematosus. Scand J Immunol 2004; 59(2):198–202.Google Scholar
  90. 90.
    Cao D, van Vollenhoven R, Klareskog L, Trollmo C, Malmstrom V. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther 2004; 6(4):R335–46.PubMedCrossRefGoogle Scholar
  91. 91.
    Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 2004; 200(3):277–85.PubMedCrossRefGoogle Scholar
  92. 92.
    Miyara M, Amoura Z, Parizot C, et al. The immune paradox of sarcoidosis and regulatory T cells. J Exp Med 2006; 203(2):359–70.PubMedCrossRefGoogle Scholar
  93. 93.
    Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004; 199(7):971–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Sugiyama H, Gyulai R, Toichi E, et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 2005; 174(1):164–73.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute for Frontier Medical SciencesKyoto UniversityJapan

Personalised recommendations