Hemodynamic Monitoring

  • Flávio E. Nácul
  • John M. O’Donnell


The art of critical care medicine has greatly changed in the last 30 years with a better understanding of physiology, advances in technology, and the development of more sophisticated monitoring systems. Hemodynamic monitoring now plays a major role in assessing and managing critically ill patients and includes the pulmonary artery flotation catheter, echocardiography, pulse contour analysis, transesophageal Doppler, and microcirculation monitoring.


Cardiac Output Pulmonary Artery Systemic Vascular Resistance Hemodynamic Monitoring Pulmonary Artery Occlusion Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Honette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283:447–451.PubMedCrossRefGoogle Scholar
  2. 2.
    Forrester JS, Diamond G, Chatterjee K, Swan HJ. Medical therapy of acute myocardial infarction by application of hemodynamic subsets (first of two parts). N Engl J Med. 1976;295:1356–1362.PubMedCrossRefGoogle Scholar
  3. 3.
    Forrester JS, Diamond G, Chatterjee K, Swan HJ. Medical therapy of acute myocardial infarction by application of hemodynamic subsets (second of two parts). N Engl J Med. 1976;295:1404–1413.PubMedCrossRefGoogle Scholar
  4. 4.
    Pinsky MR. Hemodynamic monitoring in the intensive care unit. Clin Chest Med. 2003;4:549–560.CrossRefGoogle Scholar
  5. 5.
    Rhodes A, Pinsky MR. Haemodynamic monitoring using the pulmonary artery catheter. In: Kuhlen R. Moreno R, Ranieri M, Rhodes A, editors. 25 Years of progress and innovation in intensive care medicine. Medizinisch Wissenschaftliche Verlagsgesellschaft-Berlin; 2008. p. 57–62.Google Scholar
  6. 6.
    O’Quin R, Marini JJ. Pulmonary artery occlusion pressure: clinical physiology, measurement and interpretation. Am Rev Respir Dis. 1983;128:319–326.PubMedGoogle Scholar
  7. 7.
    Calvin JE, Driedger AA, Sibbald WJ. Does the pulmonary wedge pressure predict left ventricular preload in critically ill patients? Crit Care Med. 1981;9:437–443.PubMedCrossRefGoogle Scholar
  8. 8.
    Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691–699.PubMedCrossRefGoogle Scholar
  9. 9.
    Raper R, Sibbald WJ. Misled by the wedge? The Swan Ganz catheter and left ventricular preload. Chest. 1986;89:427–434.PubMedCrossRefGoogle Scholar
  10. 10.
    Rizni K, de Boisblanc BP, Truwit JD, et al. Effect of airway pressure display on interobserver agreement in the assessment of vascular pressures in patients with acute lung injury and acute respiratory distress syndrome. Crit Care Med. 2005;33:98–103.CrossRefGoogle Scholar
  11. 11.
    Krahmer RL, Fang HK, Vitello J, et al. Pulmonary capillary wedge pressure estimates of left ventricular preload are inaccurate in endotoxin shock: Contribution of Starling resistor forces to septic pulmonary hypertension. Shock. 1994;2:344–350.PubMedCrossRefGoogle Scholar
  12. 12.
    Morris AH, Chapman RH, Gardner RM. Frequency of wedge pressure errors in the ICU. Crit Care Med. 1985;13:705–708.PubMedCrossRefGoogle Scholar
  13. 13.
    Leibowitz AB. More reliable determination of central venous and pulmonary artery occlusion pressures: Does it matter? Crit Care Med. 2005;33:243–245.PubMedCrossRefGoogle Scholar
  14. 14.
    Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP. Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med. 1981;304:387–392.PubMedCrossRefGoogle Scholar
  15. 15.
    Polanco PM, Pinsky MR. Practical issues of hemodynamic monitoring at the bedside. Surg Clin North Am. 2006;86:1431–1456.PubMedCrossRefGoogle Scholar
  16. 16.
    McGee WT, Mailloux P, Jodka P, Thomas J. The pulmonary artery catheter in critical care. Semin Dial. 2006;19:480–491.PubMedCrossRefGoogle Scholar
  17. 17.
    Carrico CJ, Horovitz JH. Monitoring the critically ill surgical patient. Adv Surg. 1977;11:101–127.PubMedGoogle Scholar
  18. 18.
    Bussières JS. Iatrogenic pulmonary artery rupture. Curr Opin Anaesthesiol. 2007;20:48–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Matthay MA, Chatterjee K. Bedside catheterization of the pulmonary artery: risks compared with benefits. Ann Intern Med. 1988;109:826–834.PubMedCrossRefGoogle Scholar
  20. 20.
    Connors AF Jr, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–897.Google Scholar
  21. 21.
    Sandham JD, Hull RD, Brant RF. et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients N Engl J Med. 2003;348:5–14.Google Scholar
  22. 22.
    Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett E. Intensive Care Med. 2002;28:256–264.PubMedCrossRefGoogle Scholar
  23. 23.
    Harvey S, Harrison DA, Singer M. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised trial controlled. Lancet 2005;366(9484):472–477.Google Scholar
  24. 24.
    Harvey S, Stevens K, Harrison D, et al. An evaluation of the clinical and cost-effectiveness of pulmonary artery catheters in patient management in intensive care: a systematic review and a randomised controlled trial. Health Technol Assess. 2006;10:1–133.Google Scholar
  25. 25.
    Pinsky MR, Vincent JL. Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med. 2005;33(5):1119–1122.PubMedCrossRefGoogle Scholar
  26. 26.
    Shoemaker WC, Wo CC, Chien LC. Evaluation of invasive and noninvasive hemodynamic monitoring in trauma patients. J Trauma 2006;61(4):844–853.Google Scholar
  27. 27.
    Harvey SE, Welch CA, Harrison DA, Rowan KM, Singer M. Post hoc insights from PAC-Man – the U.K. pulmonary artery catheter trial. Crit Care Med 2008;36:1714–1721.Google Scholar
  28. 28.
    Iberti TJ, Fischer EP, Leibowitz AB, et al. A multicenter study of physicians’ knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. JAMA. 1990;264:2928–2932.PubMedCrossRefGoogle Scholar
  29. 29.
    Gnaegi A, Feihl F, Perret C. Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med. 1997;25:213–220.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoole SP, Falter F. Evaluation of hypoxemic patients with transesophageal echocardiography. Crit Care Med. 2007;35:S408–S413.PubMedCrossRefGoogle Scholar
  31. 31.
    Porembka DT. Importance of transesophageal echocardiography in the critically ill and injured patient. Crit Care Med. 2007;35:S414–S430.PubMedCrossRefGoogle Scholar
  32. 32.
    Subramaniam B, Talmor D. Echocardiography for management of hypotension in the intensive care unit. Crit Care Méd. 2007;35:S401–S407.PubMedCrossRefGoogle Scholar
  33. 33.
    Gunst M, Ghaemmaghami V, Sperry J. Accuracy of cardiac function and volume status estimates using the bedside echocardiographic assessment in trauma/critical care. J Trauma. 2008;65:509–516.PubMedCrossRefGoogle Scholar
  34. 34.
    Vignon P, AitHssain A, Francois B, et al. Echocardiographic assessment of pulmonary artery occlusion pressure in ventilated patients: a transoesophageal study. Crit Care. 2008;12:R18.PubMedCrossRefGoogle Scholar
  35. 35.
    Salem R, Vallee F, Rusca M, Mebazaa A. Hemodynamic monitoring by echocardiography in the ICU: the role of the new echo techniques. Curr Opin Crit Care. 2008;14:561–568.PubMedCrossRefGoogle Scholar
  36. 36.
    Hofer CK, Ganter MT, Zollinger A. What technique should I use to measure cardiac output? Curr Opin Crit Care. 2007;13:308–317.PubMedCrossRefGoogle Scholar
  37. 37.
    Morgan P, Al-Subaie N, Rhodes A. Minimally invasive cardiac output monitoring. Curr Opin Crit Care. 2008;14(3):322–326.PubMedCrossRefGoogle Scholar
  38. 38.
    Uchino S, Bellomo R, Morimatsu H, et al. Pulmonary artery catheter versus pulse contour analysis: a prospective epidemiological study. Crit Care. 2006;10(6):R174.PubMedCrossRefGoogle Scholar
  39. 39.
    Marx G, Schuerholz T. Minimally invasive cardiac output monitoring. Toy or tool? In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. Berlin: Springer-Verlag; 2008. p. 607–618.Google Scholar
  40. 40.
    Jonas MM, Tanser SJ. Lithium dilution measurement of cardiac output and arterial pulse waveform analysis: an indicator dilution calibrated beat-by-beat system for continuous estimation of cardiac output. Curr Opin Crit Care. 2002;8:257–261.PubMedCrossRefGoogle Scholar
  41. 41.
    Opdam HI, Wan L, Bellomo R. A pilot assessment of the FloTrac cardiac output monitoring system. Intensive Care Med. 2007;33:344–349.PubMedCrossRefGoogle Scholar
  42. 42.
    Cholley BP, Singer M. Esophageal Doppler: noninvasive cardiac output monitor. Echocardiography. 2003;20:763–769.PubMedCrossRefGoogle Scholar
  43. 43.
    Monnet X, Teboul JL. Hemodynamic management guided by esophageal doppler. In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. Berlin: Springer-Verlag; 2006. p. 153–161.Google Scholar
  44. 44.
    den Uil CA, Klijn E, Lagrand WK, et al. The microcirculation in health and critical disease. Prog Cardiovasc Dis. 2008;51:161–170.CrossRefGoogle Scholar
  45. 45.
    Trzeciak S, McCoy JV, Phillip Dellinger R, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–2217.PubMedCrossRefGoogle Scholar
  46. 46.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.PubMedCrossRefGoogle Scholar
  47. 47.
    Verdant C, De Backer D. How monitoring of the microcirculation may help us at the bedside? Curr Opin Crit Care. 2005;11:240–244.PubMedCrossRefGoogle Scholar
  48. 48.
    Bezemer R, Khalilzada M, Ince C. Recent advancements in microcirculatory image acquisition and analysis. In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. Berlin: Springer-Verlag; 2008. p. 677–690.Google Scholar
  49. 49.
    De Backer, Ospina-Tascon G, Neves AP. Macro vs. micro targets for haemodynamic support. In: Kuhlen R, Moreno R, Ranieri M, Rhodes A, editors. Medizinisch Wissenschaftliche Verlagsgesellschaft-Berlin; 2008. p. 103–110.Google Scholar
  50. 50.
    Vallet B, Tavernier B, Lund N. Assessment of tissue oxygenation in the critically-ill. Eur J Anaesthesiol. 2000;17:221–229.PubMedGoogle Scholar
  51. 51.
    Huang YC. Monitoring oxygen delivery in the critically ill. Chest. 2005;128(5 Suppl 2):554S–560S.PubMedCrossRefGoogle Scholar
  52. 52.
    Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care. 2001;7:204–211.PubMedCrossRefGoogle Scholar
  53. 53.
    Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004;30:1572–1578.PubMedCrossRefGoogle Scholar
  54. 54.
    Marx G, Reinhart K. Venous oximetry. Curr Opin Crit Care. 2006;12:263–268.PubMedCrossRefGoogle Scholar
  55. 55.
    Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest. 1991;99:956–962.PubMedCrossRefGoogle Scholar
  56. 56.
    Mizock BA, Falk JL. Lactic acidosis in critical illness. Crit Care Med. 1992;20:80–93.PubMedCrossRefGoogle Scholar
  57. 57.
    McNelis J, Marini CP, Jurkiewicz A, et al. Prolonged lactate clearance is associated with increased mortality in the surgical intensive care unit. Am J Surg. 2001;182:481–485.PubMedCrossRefGoogle Scholar
  58. 58.
    Husain FA, Martin MJ, Mullenix PS, Steele SR, Elliott DC. Serum lactate and base deficit as predictors of mortality and morbidity. Am J Surg. 2003;185:485–491.PubMedCrossRefGoogle Scholar
  59. 59.
    Poeze M. Tissue-oxygenation assessment using near-infrared spectroscopy during severe sepsis: confounding effects of tissue edema on StO2 values. Intensive Care Med. 2006;32(5):788–789.PubMedCrossRefGoogle Scholar
  60. 60.
    Creteur J. Muscle StO2 in critically ill patients. Curr Opin Crit Care. 2008;14(3):361–366.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Flávio E. Nácul
    • 1
  • John M. O’Donnell
    • 2
  1. 1.Department of Surgical Critical Care Division of SurgeryThe Lahey Clinic Medical CenterBurlingtonUSA
  2. 2.Intensive Care MedicineUniversity Hospital Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations