Skip to main content
  • 3206 Accesses

Abstract

Hypovolemia is common among trauma, surgical, and intensive care unit (ICU) patients. Fluid deficits can occur in the absence of obvious blood or fluid loss secondary to either vasodilation or alterations of the endothelial barrier resulting in diffuse capillary leak (e.g., in septic patients). Sepsis is characterized by a panendothelial injury with subsequent development of increased endothelial permeability, loss of proteins, and interstitial edema leading to fluid shift from the intravascular to the interstitial compartment. In the critically ill intensive care patient, adequate volume restoration for treating noncompensatory, irreversible shock is essential. Prolonged under-resuscitation of the hypovolemic patient can have fatal consequences for organ function — lengthy uncor-rected hypovolemia will even jeopardize survival secondary to continuous release of various vasoactive substances and stimulation of cytokine cascades. Vigorous optimization of the circulating volume is a prerequisite to avoid development of Multiple Organ Dysfunction Syndrome (MODS) in the hypovolemic patient.1 In a prospective review of 111 consecutive patients who died in hospital after admission for treatment of injuries, the most common defects in patient management were related to inadequate fluid resuscitation.2 In approximately 50% of septic patients, only adequate volume replacement may reverse hypotension and restore hemodynamics.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Task Force of the American College of Critical Care Medicine, Society of Critical Care Medicine. Practice parameters for hemodynamic support of sepsis in adult patients in sepsis. Crit Care Med. 1999;27:639–660.

    Article  Google Scholar 

  2. Deane SA, Gaudry PL, Woods P, et al. The management of injuries – a review of death in hospital. Aust NZJ Surg. 1988;58:463–469.

    Article  CAS  Google Scholar 

  3. Lamke LO, Liljedahl SO. Plasma volume changes after infusion of various plasma expanders. Resuscitation. 1976;5:93–98.

    Article  PubMed  CAS  Google Scholar 

  4. Vaupshas HJ, Levy M. Distribution of saline following acute volume loading: postural effects. Clin Invest Med. 1990;13:165–177.

    PubMed  CAS  Google Scholar 

  5. Stein L, Berand J, Morisette M. Pulmonary edema during volume infusion. Circulation. 1975;52:483–489.

    Article  PubMed  CAS  Google Scholar 

  6. Rackow EC, Fein A, Leppo J, et al. Colloid osmotic pressure as a prognostic indicator of pulmonary edema and mortality in the critical ill. Chest. 1977;72:709–713.

    Article  PubMed  CAS  Google Scholar 

  7. Wang P, Hauptman JG, Chaudry ICH. Hemorrhage produces depression in microvascular blood flow which persist despite fluid resuscitation. Circ Shock. 1990;32:307–318.

    PubMed  CAS  Google Scholar 

  8. Maningas PA, Bellamy RF. Hypertonic sodium chloride solutions for the prehospital management of traumatic hemorrhagic shock: a possible improvement in the standard of care? Ann Emerg Med. 1986;15:1411–1414.

    Article  PubMed  CAS  Google Scholar 

  9. Kreimeier U, Messmer K. New perspectives in resuscitation and prevention of multiple organ system failure. In: Baethmann A, Messmer K, editors. Surgical research: recent concepts and results. Berlin Heidelberg: Springer; 1987. p. 39–50.

    Chapter  Google Scholar 

  10. Vollmar MD, Preissler G, Menger MD. Small-volume resuscitation restores hemorrhage-induced microcirculatory disorders in rat pancreas. Crit Care Med. 1996;24:445–450.

    Article  PubMed  CAS  Google Scholar 

  11. Boldt J, von Bormann B, Kling D, et al. Colloidosmotic pressure and extravascular lung water after extracorporeal circulation. Herz. 1985;10:366–375.

    PubMed  CAS  Google Scholar 

  12. Boldt J, Schöllhorn T, Mayer J, Piper S, Suttner S. The value of an albumin-based intravascular volume replacement strategy in elderly patients undergoing major abdominal surgery. Anesth Analg. 2006;103:191–199.

    Article  PubMed  Google Scholar 

  13. Margarson MP, Soni N. Serum albumin: touchstone or totem? Anaesthesia. 1998;53:789–803.

    Article  PubMed  CAS  Google Scholar 

  14. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–2256.

    Article  PubMed  CAS  Google Scholar 

  15. Baldo-Enzi G, Baiocchi MR, Vigna G, et al. Analbuminemia: a natural model of metabolic compensatory systems. J Inher Metab Dis. 1987;10:317–322.

    Article  PubMed  CAS  Google Scholar 

  16. Ruttmann TG, James MFM, Lombard EM. Haemodilution-induced enhancement of coagulation is attenuated in vitro by restoring antithrombin III to predilution concentrations. Anaesth Intensive Care. 2001;29:489–493.

    PubMed  CAS  Google Scholar 

  17. Wagner BK, D’Amelio LF. Pharmacologic and clinical considerations in selecting crystalloid, colloidal, and oxygen-carrying resuscitation fluids. Part 1. Clin Pharmacol. 1993;12:335–346.

    CAS  Google Scholar 

  18. Evans PA, Glenn JR, Heptinstall S, et al. Effects of gelatin-based resuscitation fluids on platelet aggregation. Br J Anaesth. 1998;81:198–292.

    Article  PubMed  CAS  Google Scholar 

  19. Mardel SN, Saunders FM, Allen H, et al. Reduced quality of clot formation with gelatin-based plasma substitutes. Br J Anaesth. 1998;80:204–207.

    Article  PubMed  CAS  Google Scholar 

  20. de Jonge E, Levi M, Berends F, et al. Impaired haemostasis by intravenous administration of a gelatin-based plasma expander in human subjects. Thromb Haemost. 1998;79:286–290.

    PubMed  Google Scholar 

  21. Franz A, Bräunlich P, Gamsjäger T, Felfernig M, Gustorff B, Kozek-Langenecker SA. The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesth Analg. 2001;92:1402–1407.

    Article  PubMed  CAS  Google Scholar 

  22. Entholzner EK, Mielke LL, Calatzis AN, Feyh J, Hipp R, Hargasser SR. Coagulation effects of a recently developed hydroxyethyl starch (HES 130/0.4) compared to hydroxethyl starches with higher molecular weight. Acta Anaesth Scand. 2000;44:1116–1121.

    Article  PubMed  CAS  Google Scholar 

  23. Haisch G, Boldt J, Krebs C, et al. The influence of a new hydroxyethyl starch preparation (6% HES 130/0.4) on coagulation in cardiac surgical patients. J Cardiothorac Vasc Anesth. 2001;15:316–321.

    Article  PubMed  CAS  Google Scholar 

  24. Schortgen F, Lacherade JC, Bruneel F, et al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicenter randomised study. Lancet. 2001;357:911–916.

    Article  PubMed  CAS  Google Scholar 

  25. Vogt NH, Bothner U, Lerch G, et al. Large-dose administration of 6% hydroxyethyl starch 200/0.5 for total hip arthroplasty: plasma homeostasis, hemostasis, and renal function compared to use of 5% human albumin. Anesth Analg. 1996;83:262–268.

    PubMed  CAS  Google Scholar 

  26. Neff TA, Doelberg M, Jungheinrich C, Sauerland A, Spahn DR, Stocker R. Repetitive large-dose infusion of the novel hydroxyethyl starch 130/0.4 in patients with severe head injury. Anesth Analg. 2003;96:1453–1459.

    Article  PubMed  CAS  Google Scholar 

  27. Jungheinrich C, Scharpf R, Wargenau M, Bepperling F, Baron JF. The pharmacokinetics and tolerability of an intravenous infusion of the new hydroxyethyl starch 130/0.4 (6%, 500 mL) in mild-to-severe renal impairment. Anesth Analg. 2002;95:544–551.

    PubMed  CAS  Google Scholar 

  28. Khandelwal P, Bohn D, Carcillo JA, Thomas NJ. Pro/con clinical debate: do colloids have advantages over crystalloids in paediatric sepsis? Crit Care. 2002;6:286–288.

    Article  PubMed  Google Scholar 

  29. Wilson MA, Chou MC, Spain DA, et al. Fluid resuscitation attenuates early cytokine mRNA expression after peritonitis. J Trauma. 1996;41:622–627.

    Article  PubMed  CAS  Google Scholar 

  30. Perret C, Feihl F. Volume expansion during septic shock. Bull Acad Natl Med. 2000;184:1621–1629.

    PubMed  CAS  Google Scholar 

  31. Boldt J. Do plasma substitutes have additional properties beyond correcting volume deficits? Shock. 2006;25:103–116.

    Article  PubMed  CAS  Google Scholar 

  32. Pope French G, Longenecker DE, editors. Fluid resuscitation. State of the science of treating combat casualties and civilian injuries. Washington, DC: National Academy Press; 1999.

    Google Scholar 

  33. Brandstrup B, Tonnesen H, Beier-Holgersen R, The Danish Study Group on Perioperative Fluid Therapy. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238:641–648.

    Article  PubMed  Google Scholar 

  34. Sakka SG, Bredle DL, Reinhardt K, et al. Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care Med. 1999;14:78–83.

    Article  CAS  Google Scholar 

  35. Mitchell JP, Schuller D, Calandrino FS, et al. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis. 1999;145:990–998.

    Article  Google Scholar 

  36. Pittard AJ, Hawkins WJ, Webster NR. The role of the microcirculation in the multi-organ dysfunction syndrome. Clin Intensive Care. 1994;5:186–190.

    PubMed  CAS  Google Scholar 

  37. Mythen MG, Webb AR. The role of gut mucosal hypoperfusion in the pathogenesis of postoperative organ dysfunction. Intensive Care Med. 1994;20:203–209.

    Article  PubMed  CAS  Google Scholar 

  38. Gutierrez G, Bismar H, Dantzker DR, et al. Comparison of gastric intramucosal pH with measures of oxygen transport and consumption in critically ill patients. Crit Care Med. 1992;20:451–457.

    Article  PubMed  CAS  Google Scholar 

  39. Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Ann Surg. 1995;130:423–429.

    CAS  Google Scholar 

  40. Bams JL, Mariani MA, Groneveld ABJ. Predicting outcome after cardiac surgery: comparison of global haemodynamic and tonometric variables. Br J Anaesth. 1999;82:33–37.

    Article  PubMed  CAS  Google Scholar 

  41. Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ. 1998;317:235–239.

    Article  Google Scholar 

  42. Alderson P, Schierhout G, Roberts I, Bunn F. Colloids versus crystalloids for fluid resuscitation in critically ill patients (Cochrane Review). The Cochrane Library, Issue 3, 2002.

    Google Scholar 

  43. Bunn F, Roberts I, Tasker R, Akpa E. Hypertonic versus crystalloid fluid resuscitation in critically ill patients (Cochrane Review). The Cochrane Library, Issue 3, 2002.

    Google Scholar 

  44. Wade CE, Kramer GC, Grady JJ, et al. Efficacy of hypertonic 7.5% saline and 6% dextran-70 in treating trauma: a meta-analysis of controlled clinical studies. Surgery. 1997;122:609–616.

    Article  PubMed  CAS  Google Scholar 

  45. Wilkes MM, Navickis RJ. Patient survival after human albumin administration – a meta-analysis of randomized controlled trials. Ann Intern Med. 2001;135:149–164.

    Article  PubMed  CAS  Google Scholar 

  46. Wilkes MM, Navickis RJ, Sibbald WJ. Albumin versus hydroxyethyl starch in cardiopulmonary bypass surgery: a meta- analysis of postoperative bleeding. Ann Thorac Surg. 2001;72:527–533.

    Article  PubMed  CAS  Google Scholar 

  47. Miller RD. Update on blood transfusions and blood substitutes. Anesth Analg. 1999;88(Suppl):71–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boldt, J. (2010). Fluid Resuscitation. In: O’Donnell, J.M., Nácul, F.E. (eds) Surgical Intensive Care Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77893-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77893-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77892-1

  • Online ISBN: 978-0-387-77893-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics