Skip to main content

Renal Replacement Therapy

  • Chapter
  • 2981 Accesses

Abstract

Endogenous toxins accumulate in blood as a result of many biochemical processes.1 If their concentration exceeds certain levels, they cause illness. Some toxins are volatile (e.g., CO2, ketones) and can be excreted by the lungs through ventilation; others are lipophilic (e.g., bile acids, bilirubin) and can be excreted by the liver via the biliary system; yet others are water soluble and nonvolatile and are excreted by the kidneys.2 When acute kidney injury (AKI) occurs, these water-soluble substances (potassium, phosphate, urea, creatinine) and endogenous toxins (methylguanidine, guanidinosuccinic acid, hippuric acid, uric acid, phenols, beta-2 microglobulin, purines, myo-inositol, etc.), which are normally excreted by the kidney, accumulate in blood. If accumulation progresses, AKI becomes severe; and if their removal is not addressed by either renal recovery or the initiation of artificial renal replacement therapy, the patient dies from uncontrolled hyperkalemia or uremia. Unfortunately, AKI requiring renal replacement therapy (RRT) is relatively common in critically ill patients treated in the intensive care unit (ICU) and involves close to 5% of all admissions.3 When a decision is made that artificial renal replacement therapy is needed, the physician has a variety of techniques at his/her disposal: intermittent hemodialysis (IHD), continuous renal replacement therapy (CCRT), slow extended daily dialysis (SLEDD), and peritoneal dialysis, each with its technical variations. All of these techniques rely on the principle that unwanted solutes and water can be removed through a semipermeable membrane-based separating process. The principles of such process have been extensively studied and described.4,5

Keywords

  • Peritoneal Dialysis
  • Renal Replacement Therapy
  • Acute Kidney Injury
  • Continuous Renal Replacement Therapy
  • Fresh Freeze Plasma

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-77893-8_39
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-77893-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 39.1
Fig. 39.2
Fig. 39.3

References

  1. Vanhoder R, De Smet R, Glorieux G, et al. Review on uremic toxins: classification, concentration, and interindividual variabiity. Kidney Int. 2003;63:1934–1943.

    CrossRef  Google Scholar 

  2. Macias WL, Clark WR. Azotemia control by extracorporeal theraphy in patients with acute renal failure. New Horiz. 1995;3:688–693.

    PubMed  CAS  Google Scholar 

  3. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicanter study. JAMA. 2005;294:813–818.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Sargent J, Gotch F. Principles and biophysics of dialysis. In: Maher JF, editor. Replacement of renal function by dialysis. Dordecht, The Netherlands: Kluwer Academic Publishers; 1989.

    Google Scholar 

  5. Henderson L. Biophysic of ultrafiltration and hemofiltration. In: Maher JF, editor. Replacement of renal function by dialysis. Dordecht, The Netherlands: Kluwer Academic Publishers; 1989.

    Google Scholar 

  6. Bellomo R, Metha R. Acute renal replacement in the intensive care unit: now and tomorrow. New Horiz. 1995;3:170–767.

    Google Scholar 

  7. Kellum JA. Primun non nocere and the meaning of modern critical care. Curr Opin Crit Care. 1998;4:400–405.

    CrossRef  Google Scholar 

  8. Hakim RM. Clinical implications of hemodialysis membrane biocompatibility. Kidney Int. 1993;44:484–494.

    PubMed  CrossRef  CAS  Google Scholar 

  9. Ronco C, Brendolan A, Bellomo R. Current technology for continuous renal replacement therapies. In: Ronco B, editor. Critical care nephrology. Dordecht, The Netherlands: Kluwer Academic Publishers; 1998.

    CrossRef  Google Scholar 

  10. Ronco C, Tetta C, Lupi A. Removal of platelet activating factor by continuous haemofiltration. Crit Care Med. 1995;23:99–107.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Bellomo R, Tipping P, Boyce N. Continuous venovenous hemofiltration with dialysis removes cytokines from the circulation of septic patients. Crit Care Med. 1993;21:522–526.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Blake PG, Daugirdas JT. Physiology of peritoneal dialysis. In: Daugirdas JT, Blafe PJ, Ing TS, editors. Handbook of dialysis. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 281–296.

    Google Scholar 

  13. Chatoth DK, Shaver MJ, Marshall MR, et al. Daily 12-hour sustained low-efficiency hemodialysis (SLED) for the treatment of critically ill patients with acute renal failure: initial experience. Blood Purif. 1999;17:Abstract 16

    Google Scholar 

  14. Paganini EP. Dialysis is not dialysis is not dialysis! Acute dialysis is different and needs help!. Am J Kidney Dis. 1998;32:832–833.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Bellomo R, Ronco C. Adequacy of dialysis in the acute renal failure of the critically ill: the case for continuous therapies. Int J Artuf Organs. 1996;19:129–142.

    CAS  Google Scholar 

  16. Ronco C, Bellomo R, Homel P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomized trial. Lancet. 2000;355:26–30.

    CrossRef  Google Scholar 

  17. Marshall MR, Golper TA, Shaver MJ, et al. Hybrid renal replacement modalities for the critically ill. Contrib Nephrol. 2001;132:252–257.

    PubMed  CrossRef  Google Scholar 

  18. Saudan P, Niederberger M, De Seigneux S, et al. Adding a dialysis dose to continuous hemofitlration increases survival in patients with acute renal failure. Kidney Int. 2006;70:1312–1317.

    PubMed  CrossRef  CAS  Google Scholar 

  19. Bellomo R. Do we know the optimal dose for renal replacement therapy in the intensive care unit? Kidney Int. 2006;70:1202–1204.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Mehta R, Dobos GJ, Ward DM. Anticoagulation procedures in continuous renal replacement. Seminars Dial. 1992;5:61–68.

    CrossRef  Google Scholar 

  21. Naka T, Egi M, Bellomo R, et al. Low-dose citrate continuous veno-venous hemofiltration and acid-base balance. Int J Artif Organs. 2005;28:222–228.

    PubMed  CAS  Google Scholar 

  22. Tan HK, Baldwin I, Bellomo R. Hemofiltration without anticoagulation in high-risk patients. Intensive Care Med. 2000;26:1652–1657.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Ronco C, Brendolan A, Bellomo R. Current technology for continuous renal replacement therapies. In: Ronco C, Bellomo R, editors. Critical care nephrology. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1998. p. 1327–1334.

    CrossRef  Google Scholar 

  24. Uchino S, Bellomo R, Kellum JA, et al. Patient and kidney survival by dialysis modality in critically ill patients with acute kidney injury. Int J Artif Organs. 2007;30:281–292.

    PubMed  CAS  Google Scholar 

  25. Davenport A. The management of renal failure in patients at risk of cerebral edema/hypoxia. New Horiz. 1995;3:717–724.

    PubMed  CAS  Google Scholar 

  26. Phu NH, Hien TT, Mai NT, et al. Hemofiltration and peritoneal dialysis in infection-associated acute renal failure in Vietnam. N Engl J Med. 2002;347:895–902.

    PubMed  CrossRef  Google Scholar 

  27. Reeves JH, Butt WW, Shann F, et al. Continuous plasmafiltration in sepsis syndrome. Crit Care Med. 1999;27:2096–2104.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Cole L, Bellomo R, Journois D, et al. High volume hemofiltration in human septic shock. Intensive Care Med. 2001;27:978–986.

    PubMed  CrossRef  CAS  Google Scholar 

  29. Brendolan A, Bellomo R, Tetta C, et al. Coupled plasma filtration adsorption in the treatment of septic shock. Contrib Nephrol. 2001;132:383–391.

    PubMed  CrossRef  CAS  Google Scholar 

  30. Haase M, Bellomo R, Baldwin I, et al. Hemodialysis membrane with a high-moluclar weigth cutoff and cytokine levels in sepsis complicated by acute renal failure: a phase I randomized trial. Am J Kidney Dis. 2007;50:296–304.

    PubMed  CrossRef  CAS  Google Scholar 

  31. Mitzner SR, Stange J, Klammt S, et al. Extracorporeal detoxification using the molecular adsorbent recirculating system for critically ill patients with liver failure. J Am Soc Nephrol. 2001;12:S75–S82.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Licari, E., Calzavacca, P., Bellomo, R. (2010). Renal Replacement Therapy. In: O’Donnell, J.M., Nácul, F.E. (eds) Surgical Intensive Care Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77893-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77893-8_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77892-1

  • Online ISBN: 978-0-387-77893-8

  • eBook Packages: MedicineMedicine (R0)