Vascular Catheter-Related Bloodstream Infections

  • Nikolaos Zias
  • Alexandra Chroneou
  • John F. Beamis
  • John F. Beamis
  • Donald E. Craven
  • Donald E. Craven


Intravascular catheter insertion is an integral part of the care received by almost every patient admitted to a hospital. Patients in intensive care units (ICU) may have multiple types of catheters placed during their hospital stay (Table 28.1). Each year millions of intravascular catheters are inserted into patients for administration of medications, fluids, or hemodynamic monitoring.1 Although intravascular catheter insertion is a common practice, it alters natural host defenses against infection, which increases the risk of local infection or bacteremia with more serious complications, such as osteomyelitis or endocarditis.


Blood Culture Central Venous Catheter Catheter Lumen Catheter Colonization Intravascular Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Maki DG, Mermel LA. Infections due to infusion therapy. In: Bennett JV, Brachman PS, editors. Hospital infections. Philadelphia: Lippincott-Raven; 1998. p. 689–724.Google Scholar
  2. 2.
    O’Grady NP, Alexander M, Dellinger JL. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep. 2002;51(RR-10):1–29.PubMedGoogle Scholar
  3. 3.
    National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1990–May 1999, issued June 1999. Am J Infect Control 1999;27(6):520–532.Google Scholar
  4. 4.
    Jarvis WR, Edwards JR, Culver DH, et al. Nosocomial infection rates in adult and pediatric intensive care units in the United States. National Nosocomial Infections Surveillance System. Am J Med. 1991;91(3B):185S–191S.PubMedCrossRefGoogle Scholar
  5. 5.
    Mermel LA. Prevention of intravascular catheter-related infections. Ann Intern Med. 2000;132(5):391–402.PubMedCrossRefGoogle Scholar
  6. 6.
    Wenzel RP, Edmond MB. Team-based prevention of catheter-related infections. N Engl J Med. 2006;355(26):2781–2783.PubMedCrossRefGoogle Scholar
  7. 7.
    Centers for Disease Control and Prevention (CDC). Monitoring hospital-acquired infections to promote patient safety – United States, 1990–1999. MMWR Morb Mortal Wkly Rep. 2000;49:149–153.Google Scholar
  8. 8.
    Pittet D, Wenzel RP. Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. Arch Intern Med. 1995;155(11):1177–1184.PubMedCrossRefGoogle Scholar
  9. 9.
    Kiehn TE, Armstrong D. Changes in the spectrum of organisms causing bacteremia and fungemia in immunocompromised patients due to venous access devices. Eur J Clin Microbiol Infect Dis. 1990;9(12):869–872.PubMedCrossRefGoogle Scholar
  10. 10.
    Mayhall CG. Diagnosis and management of infections of implantable devices used for prolonged venous access. In: Remington JS, Swartz MN, editors. Current clinical topics in infectious diseases. Cambridge, MA: Blackwell Scientific Publications; 1992. p. 83–110.Google Scholar
  11. 11.
    Pearson ML. Guideline for prevention of intravascular device-related infections. Part I. Intravascular device-related infections: an overview. The Hospital Infection Control Practices Advisory Committee. Am J Infect Control. 1996;24(4):262–277.PubMedCrossRefGoogle Scholar
  12. 12.
    Elishoov H, Or R, Strauss N, et al. Nosocomial colonization, septicemia, and Hickman/Broviac catheter-related infections in bone marrow transplant recipients. A 5-year prospective study. Medicine. 1998;77(2):83–101.PubMedCrossRefGoogle Scholar
  13. 13.
    Howell PB, Walters PE, Donowitz GR, et al. Risk factors for infection of adult patients with cancer who have tunneled central venous catheters. Cancer. 1995;75(6):1367–1375.PubMedCrossRefGoogle Scholar
  14. 14.
    Nouwen JL, Wielenga JJ, van Overhagen H, et al. Hickman catheter-related infections in neutropenic patients: insertion in the operating theater versus insertion in the radiology suite. J Clin Oncol. 1999;17(4):1304.PubMedGoogle Scholar
  15. 15.
    Adler A, Yaniv I, Steinberg R, et al. Infectious complications of implantable ports and Hickman catheters in paediatric haematology-oncology patients. J Hosp Infect. 2006;62(3):358–365.PubMedCrossRefGoogle Scholar
  16. 16.
    Raad II, Luna M, Khalil SA, et al. The relationship between the thrombotic and infectious complications of central venous catheters. JAMA. 1994;27(13):1014–1016.CrossRefGoogle Scholar
  17. 17.
    Timsit JF, Farkas JC, Boyer JM, et al. Central vein catheter-related thrombosis in intensive care patients: incidence, risks factors, and relationship with catheter-related sepsis. Chest. 1998;114(1):207–213.PubMedCrossRefGoogle Scholar
  18. 18.
    Passerini L, Lam K, Costerton JW, et al. Biofilms on indwelling vascular catheters. Crit Care Med. 1992;20(5):665–673.PubMedCrossRefGoogle Scholar
  19. 19.
    Costerton JW. Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res. 2005;437:7–11.Google Scholar
  20. 20.
    Bjarnsholt T, Jensen PO, Burmolle M, et al. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology. 2005;151(Pt 2):373–383.PubMedCrossRefGoogle Scholar
  21. 21.
    Hentzer M, Wu H, Andersen JB, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 2003;22(15):3803–3815.PubMedCrossRefGoogle Scholar
  22. 22.
    Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 2005;28(11):1062–1068.PubMedGoogle Scholar
  23. 23.
    Cooper GL, Hopkins CC. Rapid diagnosis of intravascular catheter-associated infection by direct Gram staining of catheter segments. N Engl J Med. 1985;312(18):1142–1147.PubMedCrossRefGoogle Scholar
  24. 24.
    Brun-Buisson C, Abrouk F, Legrand P, et al. Diagnosis of central venous catheter-related sepsis. Critical level of quantitative tip cultures. Arch Intern Med. 1987;147(5):873–877.PubMedCrossRefGoogle Scholar
  25. 25.
    Maki DG, Weise CE, Sarafin HW. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med. 1977;296(23):1305–1309.PubMedCrossRefGoogle Scholar
  26. 26.
    Cleri DJ, Corrado ML, Seligman SJ. Quantitative culture of intravenous catheters and other intravascular inserts. J Infect Dis. 1980;141(6):781–786.PubMedCrossRefGoogle Scholar
  27. 27.
    Sherertz RJ, Raad II, Belani A, et al. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J Clin Microbiol. 1990;28(1):76–82.PubMedGoogle Scholar
  28. 28.
    Raad I, Costerton W, Sabharwal U, et al. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis. 1993;168(2):400–407.PubMedCrossRefGoogle Scholar
  29. 29.
    Darouiche RO, Raad II, Heard SO, et al. A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med. 1999;340(1):1–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Maki DG, Stolz SM, Wheeler S, et al. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized, controlled trial. Ann Intern Med. 1997;127(4):257–266.PubMedCrossRefGoogle Scholar
  31. 31.
    DesJardin JA, Falagas ME, Ruthazer R, et al. Clinical utility of blood cultures drawn from indwelling central venous catheters in hospitalized patients with cancer. Ann Intern Med. 1999;131(9):641–647.PubMedCrossRefGoogle Scholar
  32. 32.
    Capdevila JA, Planes AM, Palomar M, et al. Value of differential quantitative blood cultures in the diagnosis of catheter-related sepsis. Eur J Clin Microbiol Infect Dis. 1992;11(5):403–407.PubMedCrossRefGoogle Scholar
  33. 33.
    Fan ST, Teoh-Chan CH, Lau KF. Evaluation of central venous catheter sepsis by differential quantitative blood culture. Eur J Clin Microbiol Infect Dis. 1989;8(2):142–144.PubMedCrossRefGoogle Scholar
  34. 34.
    Blot F, Schmidt E, Nitenberg G, et al. Earlier positivity of central-venous- versus peripheral-blood cultures is highly predictive of catheter-related sepsis. J Clin Microbiol. 1998;36(1):105–109.PubMedGoogle Scholar
  35. 35.
    Blot F, Nitenberg G, Chachaty E, et al. Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet. 1999;354(9184):1071–1077.PubMedCrossRefGoogle Scholar
  36. 36.
    Rijnders BJ, Verwaest C, Peetermans WE, et al. Difference in time to positivity of hub-blood versus nonhub-blood cultures is not useful for the diagnosis of catheter-related bloodstream infection in critically ill patients. Crit Care Med. 2001;29(7):1399–1403.PubMedCrossRefGoogle Scholar
  37. 37.
    Seifert H, Cornely O, Seggewiss K, et al. Bloodstream infection in neutropenic cancer patients related to short-term nontunnelled catheters determined by quantitative blood cultures, differential time to positivity, and molecular epidemiological typing with pulsed-field gel electrophoresis. J Clin Microbiol. 2003;41(1):118–123.PubMedCrossRefGoogle Scholar
  38. 38.
    Mermel LA, Farr BM, Sherertz RJ, et al. Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis. 2001;32(9):1249–1272.PubMedCrossRefGoogle Scholar
  39. 39.
    Widmer FA. Intravenous-related infections. In: Wenzel RP, editor. Prevention and control of nosocomial infections. 3rd ed. Baltimore: Williams & Wilkins; 1997. p. 771–806.Google Scholar
  40. 40.
    Pettigrew RA, Lang SD, Haydock DA, et al. Catheter-related sepsis in patients on intravenous nutrition: a prospective study of quantitative catheter cultures and guidewire changes for suspected sepsis. Br J Surg. 1985;72(1):52–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Raad II, Sabbagh MF. Optimal duration of therapy for catheter-related Staphylococcus aureus bacteremia: a study of 55 cases and review. Clin Infect Dis. 1992;14(1):75–82.PubMedCrossRefGoogle Scholar
  42. 42.
    Fowler VG Jr, Li J, Corey GR, et al. Role of echocardiography in evaluation of patients with Staphylococcus aureus bacteremia: experience in 103 patients. J Am Coll Cardiol. 1997;30(4):1072–1078.PubMedCrossRefGoogle Scholar
  43. 43.
    Fowler VG Jr, Boucher HW, Corey GR, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653–665.PubMedCrossRefGoogle Scholar
  44. 44.
    Grayson ML. The treatment triangle for staphylococcal infections. N Engl J Med. 2006;355(7):724–727.PubMedCrossRefGoogle Scholar
  45. 45.
    Nucci M, Colombo AL. Risk factors for breakthrough candidemia. Eur J Clin Microbiol Infect Dis. 2002;21(3):209–211.PubMedCrossRefGoogle Scholar
  46. 46.
    Rex JH, Bennett JE, Sugar AM, et al. A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med. 1994;331(20):1325–1330.PubMedCrossRefGoogle Scholar
  47. 47.
    Pappas PG, Rex JH, Sobel JD, et al. Guidelines for treatment of candidiasis. Clin Infect Dis. 2004;38(2):161–189.PubMedCrossRefGoogle Scholar
  48. 48.
    Gaillard JL, Merlino R, Pajot N, et al. Conventional and nonconventional modes of vancomycin administration to decontaminate the internal surface of catheters colonized with coagulase-negative staphylococci. JPEN J Parenter Enteral Nutr. 1990;14(6):593–597.PubMedCrossRefGoogle Scholar
  49. 49.
    Guggenbichler JP, Berchtold D, Allerberger F, et al. In vitro and in vivo effect of antibiotics on catheters colonized by staphylococci. Eur J Clin Microbiol Infect Dis. 1992;11(5):408–415.PubMedCrossRefGoogle Scholar
  50. 50.
    Simon VC, Simon M. Antibacterial activity of teicoplanin and vancomycin in combination with rifampicin, fusidic acid or fosfomycin against staphylococci on vein catheters. Scand J Infect Dis. 1990;72:14–19.Google Scholar
  51. 51.
    Kropec A, Huebner J, Wursthorn M, et al. In vitro activity of vancomycin and teicoplanin against Staphylococcus aureus and Staphylococcus epidermidis colonizing catheters. Eur J Clin Microbiol Infect Dis. 1993;12(7):545–548.PubMedCrossRefGoogle Scholar
  52. 52.
    Pascual A, Ramirez de Arellano E, Martinez Martinez L, et al. Effect of polyurethane catheters and bacterial biofilms on the in-vitro activity of antimicrobials against Staphylococcus epidermidis. J Hosp Infect. 1993;24(3):211–218.PubMedCrossRefGoogle Scholar
  53. 53.
    Ramirez de Arellano E, Pascual A, Martinez-Martinez L, et al. Activity of eight antibacterial agents on Staphylococcus epidermidis attached to Teflon catheters. J Med Microbiol. 1994;40(1):43–47.PubMedCrossRefGoogle Scholar
  54. 54.
    Messing B, Peitra-Cohen S, Debure A, et al. Antibiotic-lock technique: a new approach to optimal therapy for catheter-related sepsis in home-parenteral nutrition patients. JPEN J Parenter Enteral Nutr. 1988;12(2):185–189.PubMedCrossRefGoogle Scholar
  55. 55.
    Douard MC, Arlet G, Leverger G, et al. Quantitative blood cultures for diagnosis and management of catheter-related sepsis in pediatric hematology and oncology patients. Intensive Care Med. 1991;17(1):30–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Messing B, Man F, Colimon R, et al. Antibiotic-lock technique is an effective treatment of bacterial catheter-related sepsis during parenteral nutrition. Clin Nutr. 1990;9(4):220–225.PubMedCrossRefGoogle Scholar
  57. 57.
    Arnow PM, Kushner R. Malassezia furfur catheter infection cured with antibiotic lock therapy. Am J Med. 1991;90(1):128–130.PubMedCrossRefGoogle Scholar
  58. 58.
    Cowan CE. Antibiotic lock technique. J Intraven Nurs. 1992;15(5):283–287.PubMedGoogle Scholar
  59. 59.
    Elian JC, Frappaz D, Ros A, et al. Study of serum kinetics of vancomycin during the “antibiotic-lock” technique. Arch Fr Pediatr. 1992;49(4):357–360.PubMedGoogle Scholar
  60. 60.
    Krzywda EA, Andris DA, Edmiston CE Jr, et al. Treatment of Hickman catheter sepsis using antibiotic lock technique. Infect Control Hosp Epidemiol. 1995;16(10):596–598.PubMedCrossRefGoogle Scholar
  61. 61.
    Fowler VG Jr, Olsen MK, Corey GR, et al. Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch Int Med. 2003;163(17):2066–2072.CrossRefGoogle Scholar
  62. 62.
    Raad I, Narro J, Khan A, et al. Serious complications of vascular catheter-related Staphylococcus aureus bacteremia in cancer patients. Eur J Clin Microbiol Infect Dis. 1992;11(8):675–682.PubMedCrossRefGoogle Scholar
  63. 63.
    Verghese A, Widrich WC, Arbeit RD. Central venous septic thrombophlebitis – the role of medical therapy. Medicine. 1985;64(6):394–400.PubMedCrossRefGoogle Scholar
  64. 64.
    Eggimann P, Harbarth S, Constantin MN, et al. Impact of a prevention strategy targeted at vascular-access care on incidence of infections acquired in intensive care. Lancet. 2000;355(9218):1864–1868.PubMedCrossRefGoogle Scholar
  65. 65.
    Fernandez-Guerrero ML, Verdejo C, Azofra J, et al. Hospital-acquired infectious endocarditis not associated with cardiac surgery: an emerging problem. Clin Infect Dis. 1995;20(1):16–23.PubMedCrossRefGoogle Scholar
  66. 66.
    Lamas CC, Eykyn SJ. Hospital acquired native valve endocarditis: analysis of 22 cases presenting over 11 years. Heart. 1998;79(5):442–447.PubMedGoogle Scholar
  67. 67.
    Terpenning MS, Buggy BP, Kauffman CA. Hospital-acquired infective endocarditis. Arch Int Med. 1988;148(7):1601–1603.CrossRefGoogle Scholar
  68. 68.
    Maki DG, Ringer M, Alvarado CJ. Prospective randomised trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet. 1991;338(8763):339–343.PubMedCrossRefGoogle Scholar
  69. 69.
    Raad II, Hohn DC, Gilbreath BJ, et al. Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol. 1994;15(4 Pt 1):231–238.PubMedCrossRefGoogle Scholar
  70. 70.
    Timsit JF, Sebille V, Farkas JC, et al. Effect of subcutaneous tunneling on internal jugular catheter-related sepsis in critically ill patients: a prospective randomized multicenter study. JAMA. 1996;276(17):1416–1420.PubMedCrossRefGoogle Scholar
  71. 71.
    Timsit JF, Bruneel F, Cheval C, et al. Use of tunneled femoral catheters to prevent catheter-related infection. A randomized, controlled trial. Ann Intern Med. 1999;130(9):729–735.PubMedCrossRefGoogle Scholar
  72. 72.
    Johnson DW, van Eps C, Mudge DW, et al. Randomized, controlled trial of topical exit-site application of honey (Medihoney) versus mupirocin for the prevention of catheter-associated infections in hemodialysis patients. J Am Soc Nephrol. 2005;16(5):1456–1462.PubMedCrossRefGoogle Scholar
  73. 73.
    Johnson DW, MacGinley R, Kay TD, et al. A randomized controlled trial of topical exit site mupirocin application in patients with tunnelled, cuffed haemodialysis catheters. Nephrol Dial Transplant. 2002;17(10):1802–1807.PubMedCrossRefGoogle Scholar
  74. 74.
    Levin A, Mason AJ, Jindal KK, et al. Prevention of hemodialysis subclavian vein catheter infections by topical povidone-iodine. Kidney Int. 1991;40(5):934–938.PubMedCrossRefGoogle Scholar
  75. 75.
    Hoffmann KK, Weber DJ, Samsa GP, et al. Transparent polyurethane film as an intravenous catheter dressing. A meta-analysis of the infection risks. JAMA. 1992;267(15):2072–2076.PubMedCrossRefGoogle Scholar
  76. 76.
    Garland JS, Alex CP, Mueller CD, et al. A randomized trial comparing povidone-iodine to a chlorhexidine gluconate-impregnated dressing for prevention of central venous catheter infections in neonates. Pediatrics. 2001;107(6):1431–1436.PubMedCrossRefGoogle Scholar
  77. 77.
    Ho KM, Litton E. Use of chlorhexidine-impregnated dressing to prevent vascular and epidural catheter colonization and infection: a meta-analysis. J Antimicrob Chemother. 2006;58(2):281–287.PubMedCrossRefGoogle Scholar
  78. 78.
    Halpin DP, O’Byrne P, McEntee G, et al. Effect of a betadine connection shield on central venous catheter sepsis. Nutrition. 1991;7(1):33–34.PubMedGoogle Scholar
  79. 79.
    Segura M, Alvarez-Lerma F, Tellado JM, et al. A clinical trial on the prevention of catheter-related sepsis using a new hub model. Ann Surg. 1996;223(4):363–369.PubMedCrossRefGoogle Scholar
  80. 80.
    Lucet JC, Hayon J, Bruneel F, et al. Microbiological evaluation of central venous catheter administration hubs. Infect Control Hosp Epidemiol. 2000;21(1):40–42.PubMedCrossRefGoogle Scholar
  81. 81.
    Berthelot P, Zeni F, Pain P, et al. Catheter infection in intensive care: influence of systematic replacement of central venous catheters on a guide wire every 4 days. Presse Med. 1997;26(23):1089–1094.PubMedGoogle Scholar
  82. 82.
    Cobb DK, High KP, Sawyer RG, et al. A controlled trial of scheduled replacement of central venous and pulmonary-artery catheters. N Engl J Med. 1992;327(15):1062–1068.PubMedCrossRefGoogle Scholar
  83. 83.
    Eyer S, Brummitt C, Crossley K, et al. Catheter-related sepsis: prospective, randomized study of three methods of long-term catheter maintenance. Crit Care Med. 1990;18(10):1073–1079.PubMedCrossRefGoogle Scholar
  84. 84.
    Raad I, Darouiche R, Dupuis J, et al. Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream. A randomized, double-blind trial. The Texas Medical Center Catheter Study Group. Ann Intern Med. 1997;127(4):267–274.PubMedCrossRefGoogle Scholar
  85. 85.
    Veenstra DL, Saint S, Saha S, et al. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA. 1999;281(3):261–267.PubMedCrossRefGoogle Scholar
  86. 86.
    Capdevila JA, Segarra A, Planes A. Long term follow-up of patients with catheter related sepsis (CRS) treated without catheter removal. 35th Interscience Conference of Antimicrobial Agents and Chemotherapy;J3:(Abstract), San Francisco, 1995.Google Scholar
  87. 87.
    Mermel LA, Stolz SM, Maki DG. Surface antimicrobial activity of heparin-bonded and antiseptic-impregnated vascular catheters. J Infect Dis. 1993;167(4):920–924.PubMedCrossRefGoogle Scholar
  88. 88.
    Appelgren P, Ransjo U, Bindslev L, et al. Surface heparinization of central venous catheters reduces microbial colonization in vitro and in vivo: results from a prospective, randomized trial. Crit Care Med. 1996;24(9):1482–1489.PubMedCrossRefGoogle Scholar
  89. 89.
    Maki DG, Cobb L, Garman JK, et al. An attachable silver-impregnated cuff for prevention of infection with central venous catheters: a prospective randomized multicenter trial. Am J Med. 1988;85(3):307–314.PubMedCrossRefGoogle Scholar
  90. 90.
    Flowers RH III, Schwenzer KJ, Kopel RF, et al. Efficacy of an attachable subcutaneous cuff for the prevention of intravascular catheter-related infection. A randomized, controlled trial. JAMA. 1989;261(6):878–883.PubMedCrossRefGoogle Scholar
  91. 91.
    Hasaniya NW, Angelis M, Brown MR, et al. Efficacy of subcutaneous silver-impregnated cuffs in preventing central venous catheter infections. Chest. 1996;109(4):1030–1032.PubMedCrossRefGoogle Scholar
  92. 92.
    Hachem R, Raad I. Prevention and management of long-term catheter related infections in cancer patients. Cancer Invest. 2002;20(7–8):1105–1113.PubMedCrossRefGoogle Scholar
  93. 93.
    Zaidi Y, Hastings M, Murray J, et al. Quinolone resistance in neutropenic patients: the effect of prescribing policy in the UK and Pakistan. Clin Lab Haematol. 2001;23(1):39–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nikolaos Zias
    • 1
  • Alexandra Chroneou
    • 1
  • John F. Beamis
    • 2
  • John F. Beamis
    • 3
  • Donald E. Craven
    • 4
  • Donald E. Craven
    • 5
  1. 1.Department of Pulmonary and Critical Care MedicineLahey Clinic Medical CenterBurlingtonUSA
  2. 2.Tufts University School of MedicineBurlingtonUSA
  3. 3.Division of Internal Medicine, Department of Pulmonary and Critical Care MedicineLahey Clinic Medical CenterBurlingtonUSA
  4. 4.Tufts University School of MedicineBurlingtonUSA
  5. 5.Department of Infectious DiseasesLahey Clinic Medical CenterBurlingtonUSA

Personalised recommendations