• Patricia Mello
  • R. Phillip Dellinger


Sepsis represents the body’s response to an infectious insult. It is characterized by the dysregulation of the inflammatory response and of the coagulation homeostasis leading to a pro-inflammatory, prothrombotic, and antifibrinolysis state. Depending on the host’s predisposition and comorbidities, as well as on the nature and intensity of the insult, sepsis may progress to severe sepsis, which may be associated with circulatory shock, cellular dysfunction, multiple organ failure, and death.


Septic Shock Severe Sepsis Mean Arterial Pressure Systemic Inflammatory Response Syndrome Septic Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–1310.PubMedCrossRefGoogle Scholar
  2. 2.
    Linde-Zwirble WT, Angus DC. Severe sepsis epidemiology: sampling, selection, and society. Crit Care. 2004;8:222–226.PubMedCrossRefGoogle Scholar
  3. 3.
    Dombrovskiy VY, Martin AA, Sunderram J, et al. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35:1414–1415.CrossRefGoogle Scholar
  4. 4.
    Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–1554.PubMedCrossRefGoogle Scholar
  5. 5.
    Angus DC, Kelley MA, Schmitz RJ, et al. Caring for the critically ill. Current and projected workforce requirements for care of the critically ill and patients with pulmonary disease: can we meet the requirements of an aging population. JAMA. 2000;284:2762–2770.PubMedCrossRefGoogle Scholar
  6. 6.
    American Cancer Society. Cancer Statistics. Available at: Accessed March 29, 2001.
  7. 7.
    American Heart Association. 2001 Heart and stroke statistical update. Dallas, TX: American Heart Association; 2000.Google Scholar
  8. 8.
    Bone RC, Balk RA, Cerra FB, et al. American College of Chest Physicians / Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101:1644–1655.PubMedCrossRefGoogle Scholar
  9. 9.
    Vincent JL. Dear SIRS, i’m sorry to say that i don’t like you. Crit Care Med. 1997;25:372–374.PubMedCrossRefGoogle Scholar
  10. 10.
    Marshall JC. SIRS and MODS: what is their relevance to the science and practice of intensive care? Shock. 2000;14(6):586–589.PubMedCrossRefGoogle Scholar
  11. 11.
    Levy MM, Fink MP, Abraham E, et al. SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;29:530–538.PubMedGoogle Scholar
  12. 12.
    Marshall JC, Cook DJ, Cristou NV, et al. Multiple organ dysfunction score: a reliable predictor of complex clinical outcome. Crit Care Med. 1995;23:1638–1652.PubMedCrossRefGoogle Scholar
  13. 13.
    Ferreira FL, Bota DP, Bross A, et al. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA. 2001;286:1754–1758.PubMedCrossRefGoogle Scholar
  14. 14.
    Levy M, Bernard GR, Ely EW, et al. Late breaker session. Society of Critical Care Medicine Annual Meeting. San Diego, CA: January 30, 2002.Google Scholar
  15. 15.
    Agnese DM, Calvano JE, Hahm SJ, et al. Human toll-like receptor form mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis. 2002;186:1522–1525.PubMedCrossRefGoogle Scholar
  16. 16.
    Lorenz E, Mira JP, Frees KL, et al. Relevance of mutations in the TLR4 receptors in patients with gram-negative septic shock. Arch Intern Med. 2002;162:1028–1032.PubMedCrossRefGoogle Scholar
  17. 17.
    Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709.PubMedCrossRefGoogle Scholar
  18. 18.
    Mira JP, Cariou A, Grall F, et al. Association of TNF2, a TNF promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA. 1999;282:561–568.PubMedCrossRefGoogle Scholar
  19. 19.
    Taniguchi T, Koido Y, Aiboshi J, et al. Change in the ratio of interleukin-6 to interleukin-10 predicts a poor outcome in patients with systemic inflammatory response syndrome. Crit Care Med. 1999;27(7):1262–1264.PubMedCrossRefGoogle Scholar
  20. 20.
    Takala A, Jousela I, Olkkola KT, et al. Systemic inflammatory response syndrome without systemic inflammation in acutely ill patients admitted to hospital in a medical emergency. Clin Sci (Lond). 1999;96(3):287–295.CrossRefGoogle Scholar
  21. 21.
    Proulx F, Fayon M, Farrell CA, et al. Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest. 1996;109:1033–1037.PubMedCrossRefGoogle Scholar
  22. 22.
    Sablotzki A, Borgermann J, Baulig W, et al. Lipopolysaccharide binding protein (LBP) and markers of acute-phase response in patients with multiple organ dysfunction syndrome (MODS) following open heart surgery. Thorac Cardiovasc Surg. 2001;49(5):273–278.PubMedCrossRefGoogle Scholar
  23. 23.
    Harbarth S, Holeckova K, Froidevaux C, et al. Diagnostic value of procalcitonin, interleukin-6 and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med. 2001;164(3):396–402.PubMedCrossRefGoogle Scholar
  24. 24.
    Duflo F, Debon R, Monneret G, et al. Alveolar and serum procalcitonin: diagnostic and prognostic value in ventilator-associated pneumonia. Anesthesiology. 2002;96(1):74–79.PubMedCrossRefGoogle Scholar
  25. 25.
    Fisher CJ, Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. N Engl J Med. 1996;334:1697–1702.PubMedCrossRefGoogle Scholar
  26. 26.
    Abraham E, Wunderink R, Silverman H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome: a randomized, controlled, double-blind, multicenter clinical trial. JAMA. 1995;273:934–941.PubMedCrossRefGoogle Scholar
  27. 27.
    Fisher CJ, Slotman GJ, Opal SM, et al. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. Crit Care Med. 1994;22:12–21.PubMedGoogle Scholar
  28. 28.
    Cobb JP. Nitric oxide synthase inhibition as therapy for sepsis: a decade of promise. Surg Infect (Larchmt). 2001;2:93–100.CrossRefGoogle Scholar
  29. 29.
    Grover R, Zaccardelli D, Colice G, et al. An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hydrochloride (546C88), in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Crit Care Med. 1999;27:913–922.PubMedCrossRefGoogle Scholar
  30. 30.
    Sadikot RT, Christman JW, Blackwell TS. Molecular targets for modulating lung inflammation and injury. Curr Drug Targets. 2004;5:581–588.PubMedCrossRefGoogle Scholar
  31. 31.
    Yang H, Ochani M, Li J, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Nat Acad Sci USA. 2004;101:296–301.PubMedCrossRefGoogle Scholar
  32. 32.
    Cinel I, Dellinger RP. Advances in pathogenesis and management of sepsis. Curr Opin Infect Dis. 2007;20(4):345–352.PubMedCrossRefGoogle Scholar
  33. 33.
    Manaker PN. Septic shock and other preload states. In: Lanken PN, Hansom CW, Manaker S, editors. The intensive care unit manual. Philadelphia: W.B. Saunders; 2001. p. 93–102.Google Scholar
  34. 34.
    Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345:588–595.PubMedCrossRefGoogle Scholar
  35. 35.
    Trzeciak S, Dellinger RP, Parrillo JE, et al. Microcirculatory Alterations in Resuscitation and Shock Investigators. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 2007;49(1):88–98, 98.e1–2.Google Scholar
  36. 36.
    Rosenberg RD, Aird WC. Vascular-bed-specific homeostasis and hypercoagulable states. N Engl J Med. 1999;340:1555–1564.PubMedCrossRefGoogle Scholar
  37. 37.
    Tomashefski JF. Pulmonary pathology of the adult respiratory distress syndrome. Clin Chest Med. 1990;11:593–619.PubMedGoogle Scholar
  38. 38.
    Cosby K, Partovi KS, Crawford JH, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–1505.PubMedCrossRefGoogle Scholar
  39. 39.
    Singel DJ, Stamler JS. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol. 2005;67:99–145.PubMedCrossRefGoogle Scholar
  40. 40.
    Morin MJ, Unno N, Hodin RA, et al. Differential expression of inducible nitric oxide synthase messenger RNA along the longitudinal and crypt-villus axes of the intestine in endotoxemic rats. Crit Care Med. 1998;26:1258–1264.PubMedCrossRefGoogle Scholar
  41. 41.
    Revelly JP, Ayuse T, Brienza N, et al. Endotoxic shock alters distribution of blood flow within the intestinal wall. Crit Care Med. 1996;24:1345–1351.PubMedCrossRefGoogle Scholar
  42. 42.
    Vallet B. Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med. 2002;30(Suppl 5):S229–S234.PubMedCrossRefGoogle Scholar
  43. 43.
    Lidington D, Tyml K, Ouellette Y. Lipopolysaccharide-induced reductions in cellular coupling correlate with tyrosine phosphorylation of connexin. J Cell Physiol. 2002;193:373–379.PubMedCrossRefGoogle Scholar
  44. 44.
    Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M, et al. Red blood cell rheology in sepsis. Intensive Care Med. 2003;29:1052–1061.PubMedCrossRefGoogle Scholar
  45. 45.
    Cerwinka WH, Cooper D, Krieglstein CF, et al. Superoxide mediates endotoxin-induced platelet – endothelial cell adhesion in intestinal venules. Am J Physiol Heart Circ Physiol. 2003;284:H535–H541.PubMedGoogle Scholar
  46. 46.
    Martins PS, Kallas EG, Neto MC, et al. Upregulation of reactive oxygen species generation and phagocytosis, and increased apoptosis in human neutrophils during severe sepsis and septic shock. Shock. 2003;20:208–212.PubMedCrossRefGoogle Scholar
  47. 47.
    Victor VM, Rocha M, De la Fuente M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol. 2004;4:327–347.PubMedCrossRefGoogle Scholar
  48. 48.
    Fink MP. Intestinal epithelial hyperpermeability: update on the pathogenesis of gut mucosal barrier dysfunction in critical illness. Curr Opin Crit Care. 2003;9:143–151.PubMedCrossRefGoogle Scholar
  49. 49.
    Singer M. Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med. 2007;35(9 Suppl):441–448.CrossRefGoogle Scholar
  50. 50.
    Iregui M, Ward S, Sherman G, et al. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002;122:262–268.PubMedCrossRefGoogle Scholar
  51. 51.
    Luna CM, Vujacich P, Niederman MS, et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest. 1997;111:676.PubMedCrossRefGoogle Scholar
  52. 52.
    Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 versus 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290:2588–2598.PubMedCrossRefGoogle Scholar
  53. 53.
    Martin C, Papazian L, Perrin G, et al. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest. 1993;103:1826.PubMedCrossRefGoogle Scholar
  54. 54.
    Martin C, Viviand X, Leone M, et al. Effect of norepinephrine on the outcome of septic shock. Crit Care Med. 2000;28:2758–2765.PubMedCrossRefGoogle Scholar
  55. 55.
    Van den Berghe G, de Zegher F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med. 1996;24:1580–1590.PubMedCrossRefGoogle Scholar
  56. 56.
    Ract C, Vigue B. Comparison of the cerebral effects of dopamine and norepinephrine in severely head-injured patients. Int Care Med. 2001;27:101–106.CrossRefGoogle Scholar
  57. 57.
    Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA. 1994;272:1354–1357.PubMedCrossRefGoogle Scholar
  58. 58.
    LeDoux D, Astiz ME, Carpati CM, et al. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–2732.PubMedCrossRefGoogle Scholar
  59. 59.
    Bellomo R, Chapman M, Finfer S, et al. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial – Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000;356:2139–2143.PubMedCrossRefGoogle Scholar
  60. 60.
    Annane D, Vignon P, Renault A, et al. CATS Study Group. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet 2007;370(9588):676–684.Google Scholar
  61. 61.
    Landry DW, Levin HR, Gallant EM, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95:1122–1125.PubMedCrossRefGoogle Scholar
  62. 62.
    Sharshar T, Blanchard A, Paillard M, et al. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31:1752–1758.PubMedCrossRefGoogle Scholar
  63. 63.
    Patel BM, Chittock DR, Russell JA, et al. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96:576–582.PubMedCrossRefGoogle Scholar
  64. 64.
    Dünser MW, Mayr AJ, Ulmer H, et al. Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation. 2003;107:2313–2319.PubMedCrossRefGoogle Scholar
  65. 65.
    Holmes CL, Walley KR, Chittock DR, et al. The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med. 2001;27:1416–1421.PubMedCrossRefGoogle Scholar
  66. 66.
    Lauzier F, Levy B, Lamarre P, et al. Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial. Intensive Care Med. 2006;32:1782–1789.PubMedCrossRefGoogle Scholar
  67. 67.
    Russell J. Hemodynamic support of sepsis: vasopressin versus norepinephrine for septic shock. Program and abstracts of the Society of Critical Care Medicine 36th Critical Care Congress. Orlando, FL: February 17–21, 2007.Google Scholar
  68. 68.
    Dünser MW, Mayr AJ, Tura A, et al. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003;31:1394–1398.PubMedCrossRefGoogle Scholar
  69. 69.
    Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377.PubMedCrossRefGoogle Scholar
  70. 70.
    Harvey S, Harrison DA, Singer M, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366:472–477.PubMedCrossRefGoogle Scholar
  71. 71.
    Wheeler AP, Bernard GR, Thompson BT, et al. Pulmonary artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354:2213–2224.PubMedCrossRefGoogle Scholar
  72. 72.
    Goedje O, Hoeke K, Lichtwarck-Aschoff M, et al. Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med. 1999;27:2407–2412.PubMedCrossRefGoogle Scholar
  73. 73.
    Della Rocca G, Costa MG, Coccia C, et al. Cardiac output monitoring: aortic transpulmonary thermodilution and pulse contour analysis agree with standard thermodilution methods in patients undergoing lung transplantation. Can J Anaesth. 2003;50:707–711.PubMedCrossRefGoogle Scholar
  74. 74.
    Pittman J, Bar-Yosef S, SumPing J, et al. Continuous cardiac output monitoring with pulse contour analysis: a comparison with lithium indicator dilution cardiac output measurement. Crit Care Med. 2005;33(9):2015–2021.PubMedCrossRefGoogle Scholar
  75. 75.
    Reuter DA, Kirchner A, Felbinger TW, et al. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31(5):1399–1404.PubMedCrossRefGoogle Scholar
  76. 76.
    Marx G, Cope T, McCrossan L, et al. Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol. 2004;21(2):132–138.PubMedGoogle Scholar
  77. 77.
    Vallée F, Fourcade O, De Soyres O, et al. Stroke output variations calculated by esophageal Doppler is a reliable predictor of fluid response. Intensive Care Med. 2005;31(10):1388–1393.PubMedCrossRefGoogle Scholar
  78. 78.
    Varpula M, Tallgren M, Saukkonen K, et al. Hemodynamic variables related to outcome in septic shock. Int Care Med. 2005;31:1066–1071.CrossRefGoogle Scholar
  79. 79.
    Choi PTL, Yip G, Quinonez LG, et al. Crystalloids vs colloids in fluid resuscitation: a systematic review. Crit Care Med. 1999;27:200–210.PubMedCrossRefGoogle Scholar
  80. 80.
    Cook D, Guyatt G. Colloid use for fluid resuscitation: evidence and spin. Ann Intern Med. 2001;135:205–208.PubMedCrossRefGoogle Scholar
  81. 81.
    Finfer S, Bellomo R, Boyce N, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–2256.PubMedCrossRefGoogle Scholar
  82. 82.
    Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32:858–873.PubMedCrossRefGoogle Scholar
  83. 83.
    Dellinger RP. Recombinant activated protein C: decisions for administration. Crit Care Med. 2006;34:530–531.PubMedCrossRefGoogle Scholar
  84. 84.
    Eichacker PQ, Natanson C. Increasing evidence that the risks of rhAPC may outweigh its benefits. Int Care Med. 2007;33:396–399.CrossRefGoogle Scholar
  85. 85.
    Abraham E, Laterre PF, Garg R, et al. Administration of Drotrecogin Alfa (Activated) in Early Stage Severe Sepsis (ADDRESS) Study Group: drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med. 2005;353(13):1332–1341.PubMedCrossRefGoogle Scholar
  86. 86.
    Goldstein B, Nadel S, Peters M, et al. ENHANCE: results of a global open-label trial of drotrecogin alfa (activated) in children with severe sepsis. Pediatr Crit Care Med. 2006;7:200–211.PubMedCrossRefGoogle Scholar
  87. 87.
    Barton P, Kalil AC, Nadel S, et al. Safety, pharmacokinetics, and pharmacodynamics of drotrecogin alfa (activated) in children with severe sepsis. Pediatrics. 2004;113(1 Pt 1):7–17.PubMedCrossRefGoogle Scholar
  88. 88.
    Nadel S, Goldstein B, Williams MD, et al. REsearching severe Sepsis and Organ dysfunction in children: a gLobal perspective (RESOLVE) study group. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet. 2007;369(9564):836–843.PubMedCrossRefGoogle Scholar
  89. 89.
    Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–871.PubMedCrossRefGoogle Scholar
  90. 90.
    Sprung CL, Annane D, Keh D, et al. CORTICUS Study Group. Hydrocortisone therapy for patients with septic shock. N Engl J Med 2008;358(2):111–124.Google Scholar
  91. 91.
    Silva E, Passos R, Ferri M, et al. Sepsis: from bench to bedside. Clinics. 2008;63(1):109–20.PubMedCrossRefGoogle Scholar
  92. 92.
    Dellinger RP, Levy MM, Carlet JM, et al. International Surviving Sepsis Campaign Guidelines Committee. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2008. Crit Care Med 2008;36(1):296–327.Google Scholar
  93. 93.
    Berger MM, Chioléro RL. Antioxidant supplementation in sepsis and systemic inflammatory response syndrome. Crit Care Med. 2007;35(9 Suppl):S584–S590.PubMedCrossRefGoogle Scholar
  94. 94.
    Veres B, Gallyas F, Varbiro G, et al. Decrease of the inflammatory response and induction of the Akt/protein kinase B pathway by poly-(ADP-ribose) polymerase 1 inhibitor in endotoxin-induced septic shock. Biochem Pharmacol. 2003;65(8):1373–1382.PubMedCrossRefGoogle Scholar
  95. 95.
    De Backer D, Creteur J, Dubois MJ, et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med. 2006;34:403–408.PubMedCrossRefGoogle Scholar
  96. 96.
    Sakr Y, Chierego M, Piagnerelli M, et al. Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med. 2007;35(7):1639–1644.PubMedCrossRefGoogle Scholar
  97. 97.
    Spronk PE, Ince C, Gardien MJ, et al. Nitroglycerin in septic shock after volume resuscitation. Lancet. 2002;360:1395–1396.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Patricia Mello
    • 1
  • R. Phillip Dellinger
    • 2
  1. 1.Department of Critical Care, Hospital de Terapia IntensivaUniversidade Estadual Do PiauíTeresinaBrazil
  2. 2.Division of Critical Care Medicine, Robert Wood Johnson Medical SchoolCooper University Hospital, University of Medicine and Dentistry of New JerseyCamdenUSA

Personalised recommendations