Acute Respiratory Failure

  • Luciano Gattinoni
  • Eleonora Carlesso
  • Federico Polli


Respiratory failure is defined as the inability of the respiratory system to maintain normal oxygen and carbon dioxide tensions (PaO2 and PaCO2, respectively), when breathing room air. Normal PaCO2 ranges from 35 to 45 mmHg, while normal PaO2 ranges from 80 to 100 mmHg and declines with age according to the following formula1:


Continuous Positive Airway Pressure Acute Respiratory Distress Syndrome Functional Residual Capacity Lung Region Lung Edema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Marshall BE, Wyche MQ Jr. Hypoxemia during and after anesthesia. Anesthesiology. 1972;37:178–209.PubMedCrossRefGoogle Scholar
  2. 2.
    Fahri LE. Ventilation-perfusion relationships. In: Fishman AP, Fahri LE, Marsh Tenney S, editors. The respiratory system: gas exchange. Bethesda, MA: Waverly Press; 1987. p. 199–215.Google Scholar
  3. 3.
    Riley RL, Cournand A. ‘Ideal’ alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J Appl Physiol. 1949;1:825–847.PubMedGoogle Scholar
  4. 4.
    Cressoni M, Caironi P, Polli F, et al. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med. 2008;36(3):669–675.PubMedCrossRefGoogle Scholar
  5. 5.
    Severinghaus JW, Koh SO. Effect of anemia on pulse oximeter accuracy at low saturation. J Clin Monit. 1990;6:85–88.PubMedCrossRefGoogle Scholar
  6. 6.
    Severinghaus JW, Kelleher JF. Recent developments in pulse oximetry. Anesthesiology. 1992;76:1018–1038.PubMedCrossRefGoogle Scholar
  7. 7.
    Tavernier B, Rey D, Thevenin D, et al. Can prolonged expiration manoeuvres improve the prediction of arterial PCO2 from end-tidal PCO2? Br J Anaesth. 1997;78:536–540.PubMedCrossRefGoogle Scholar
  8. 8.
    Malatesha G, Singh NK, Bharija A, et al. Comparison of arterial and venous pH, bicarbonate, PCO2 and PO2 in initial emergency department assessment. Emerg Med J. 2007;24:569–571.PubMedCrossRefGoogle Scholar
  9. 9.
    Malinoski DJ, Todd SR, Slone S, et al. Correlation of central venous and arterial blood gas measurements in mechanically ventilated trauma patients. Arch Surg. 2005;140:1122–1125.PubMedCrossRefGoogle Scholar
  10. 10.
    Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;164:1701–1711.PubMedCrossRefGoogle Scholar
  11. 11.
    Strain DS, Kinasewitz GT, Vereen LE, George RB. Value of routine daily chest x-rays in the medical intensive care unit. Crit Care Med. 1985;13:534–536.PubMedCrossRefGoogle Scholar
  12. 12.
    Chahine-Malus N, Stewart T, Lapinsky SE, et al. Utility of routine chest radiographs in a medical-surgical intensive care unit: a quality assurance survey. Crit Care. 2001;5:271–275.PubMedCrossRefGoogle Scholar
  13. 13.
    Gattinoni L, Caironi P, Valenza F, Carlesso E. The role of CT-scan studies for the diagnosis and therapy of acute respiratory distress syndrome. Clin Chest Med. 2006;27:559–570.PubMedCrossRefGoogle Scholar
  14. 14.
    Gattinoni L, Mascheroni D, Torresin A, et al. Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med. 1986;12:137–142.PubMedCrossRefGoogle Scholar
  15. 15.
    Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354:1775–1786.PubMedCrossRefGoogle Scholar
  16. 16.
    Rothen HU, Sporre B, Engberg G, et al. Re-expansion of atelectasis during general anaesthesia: a computed tomography study. Br J Anaesth. 1993;71:788–795.PubMedCrossRefGoogle Scholar
  17. 17.
    Tokics L, Hedenstierna G, Strandberg A, et al. Lung collapse and gas exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis, and positive end-expiratory pressure. Anesthesiology. 1987;66:157–167.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith G, Cheney FW Jr, Winter PM. The effect of change in cardiac output on intrapulmonary shunting. Br J Anaesth. 1974;46:337–342.PubMedCrossRefGoogle Scholar
  19. 19.
    Lynch JP, Mhyre JG, Dantzker DR. Influence of cardiac output on intrapulmonary shunt. J Appl Physiol. 1979;46:315–321.PubMedGoogle Scholar
  20. 20.
    Cheney FW, Colley PS. The effect of cardiac output on arterial blood oxygenation. Anesthesiology. 1980;52:496–503.PubMedCrossRefGoogle Scholar
  21. 21.
    Hofer CK, Ganter MT, Zollinger A. What technique should I use to measure cardiac output? Curr Opin Crit Care. 2007;13:308–317.PubMedCrossRefGoogle Scholar
  22. 22.
    Damgaard-Pedersen K, Qvist T. Pediatric pulmonary CT-scanning. Anaesthesia-induced changes. Pediatr Radiol. 1980;9:145–148.PubMedCrossRefGoogle Scholar
  23. 23.
    Warner DO, Warner MA, Ritman EL. Atelectasis and chest wall shape during halothane anesthesia. Anesthesiology. 1996;85:49–59.PubMedCrossRefGoogle Scholar
  24. 24.
    Eichenberger A, Proietti S, Wicky S, et al. Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem. Anesth Analg. 2002;95:1788–1792. table.PubMedCrossRefGoogle Scholar
  25. 25.
    Valenza F, Vagginelli F, Tiby A, et al. Effects of the beach chair position, positive end-expiratory pressure, and pneumoperitoneum on respiratory function in morbidly obese patients during anesthesia and paralysis. Anesthesiology. 2007;107:725–732.PubMedCrossRefGoogle Scholar
  26. 26.
    Koitabashi T, Sato N, Takino Y. Falls in PaO2 owing to prostaglandin E1 infusion in an obese patient undergoing laparoscopic cholecystectomy – detection by intra-arterial blood gas monitoring. Masui. 1997;46:258–261.PubMedGoogle Scholar
  27. 27.
    Hedenstierna G. Pulmonary perfusion during anesthesia and mechanical ventilation. Minerva Anestesiol. 2005;71:319–324.PubMedGoogle Scholar
  28. 28.
    Wheeler AP, Bernard GR, Thompson BT, et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354:2213–2224.PubMedCrossRefGoogle Scholar
  29. 29.
    Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–824.PubMedCrossRefGoogle Scholar
  30. 30.
    Pelosi P, D’Onofrio D, Chiumello D, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J Suppl. 2003;42:48s–56s.PubMedCrossRefGoogle Scholar
  31. 31.
    Gattinoni L, Carlesso E, Cadringher P, et al. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl. 2003;47:15s–25s.PubMedCrossRefGoogle Scholar
  32. 32.
    Pelosi P, Goldner M, McKibben A, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001;164:122–130.PubMedCrossRefGoogle Scholar
  33. 33.
    Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005;31:776–784.PubMedCrossRefGoogle Scholar
  34. 34.
    Tomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med. 2000;21:435–466.PubMedCrossRefGoogle Scholar
  35. 35.
    Gattinoni L, Bombino M, Pelosi P, et al. Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA. 1994;271:1772–1779.PubMedCrossRefGoogle Scholar
  36. 36.
    Pelosi P, D’Andrea L, Vitale G, et al. Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1994;149:8–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Hales CA, Kanarek DJ, Ahluwalia B, et al. Regional edema formation in isolated perfused dog lungs. Circ Res. 1981;48:121–127.PubMedCrossRefGoogle Scholar
  38. 38.
    Jones T, Jones HA, Rhodes CG, et al. Distribution of extravascular fluid volumes in isolated perfused lungs measured with H215O. J Clin Invest. 1976;57:706–713.PubMedCrossRefGoogle Scholar
  39. 39.
    Gattinoni L, Pelosi P, Vitale G, et al. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology. 1991;74:15–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Mangano DT. Perioperative cardiac morbidity. Anesthesiology. 1990;72:153–184.PubMedCrossRefGoogle Scholar
  41. 41.
    Robin ED, Julian DG, Travis DM, Crump CH. A physiologic approach to the diagnosis of acute pulmonary embolism. N Engl J Med. 1959;260:586–591.PubMedCrossRefGoogle Scholar
  42. 42.
    Stratmann G, Gregory GA. Neurogenic and humoral vasoconstriction in acute pulmonary thromboembolism. Anesth Analg. 2003;97:341–354.PubMedCrossRefGoogle Scholar
  43. 43.
    Cullen DJ, Eger EI. Cardiovascular effects of carbon dioxide in man. Anesthesiology. 1974;41:345–349.PubMedCrossRefGoogle Scholar
  44. 44.
    Millar RA. Plasma adrenaline and noradrenaline during diffusion respiration. J Physiol. 1960;150:79–90.PubMedGoogle Scholar
  45. 45.
    Sechzer PH, Egbert LD, Linde HW, et al. Effect of carbon dioxide inhalation on arterial pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal man. J Appl Physiol. 1960;15:454–458.PubMedGoogle Scholar
  46. 46.
    Westerblad H, Bruton JD, Lannergren J. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol. 1997;500(Pt 1):193–204.PubMedGoogle Scholar
  47. 47.
    Barer GR, Howard P, McCurrie JR. The effect of carbon dioxide and changes in blood pH on pulmonary vascular resistance in cats. Clin Sci. 1967;32:361–376.PubMedGoogle Scholar
  48. 48.
    Kiely DG, Cargill RI, Lipworth BJ. Effects of hypercapnia on hemodynamic, inotropic, lusitropic, and electrophysiologic indices in humans. Chest. 1996;109:1215–1221.PubMedCrossRefGoogle Scholar
  49. 49.
    Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–871.PubMedCrossRefGoogle Scholar
  50. 50.
    Hedenstierna G, Rothen HU. Atelectasis formation during anesthesia: causes and measures to prevent it. J Clin Monit Comput. 2000;16:329–335.PubMedCrossRefGoogle Scholar
  51. 51.
    Piacentini E, Villagra A, Lopez-Aguilar J, Blanch L. Clinical review: the implications of experimental and clinical studies of recruitment maneuvers in acute lung injury. Crit Care. 2004;8:115–121.PubMedCrossRefGoogle Scholar
  52. 52.
    Lapinsky SE, Mehta S. Bench-to-bedside review: recruitment and recruiting maneuvers. Crit Care. 2005;9:60–65.PubMedCrossRefGoogle Scholar
  53. 53.
    Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–354.PubMedCrossRefGoogle Scholar
  54. 54.
    Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–336.PubMedCrossRefGoogle Scholar
  55. 55.
    Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34:1311–1318.PubMedCrossRefGoogle Scholar
  56. 56.
    Pontoppidan H, Geffin B, Lowenstein E. Acute respiratory failure in the adult. 3. N Engl J Med. 1972;287:799–806.PubMedCrossRefGoogle Scholar
  57. 57.
    Kumar A, Falke KJ, Geffin B, et al. Continuous positive-pressure ventilation in acute respiratory failure. N Engl J Med. 1970;283:1430–1436.PubMedCrossRefGoogle Scholar
  58. 58.
    Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110:556–565.PubMedGoogle Scholar
  59. 59.
    Baeza OR, Wagner RB, Lowery BD. Pulmonary hyperinflation. A form of barotrauma during mechanical ventilation. J Thorac Cardiovasc Surg. 1975;70:790–805.PubMedGoogle Scholar
  60. 60.
    Kolobow T, Gattinoni L, Tomlinson TA, Pierce JE. Control of breathing using an extracorporeal membrane lung. Anesthesiology. 1977;46:138–141.PubMedCrossRefGoogle Scholar
  61. 61.
    Kolobow T, Gattinoni L, Tomlinson T, Pierce JE. An alternative to breathing. J Thorac Cardiovasc Surg. 1978;75:261–266.PubMedGoogle Scholar
  62. 62.
    Gattinoni L, Kolobow T, Tomlinson T, et al. Low-frequency positive pressure ventilation with extracorporeal carbon dioxide removal (LFPPV-ECCO2R): an experimental study. Anesth Analg. 1978;57:470–477.PubMedCrossRefGoogle Scholar
  63. 63.
    Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med. 1990;16:372–377.PubMedCrossRefGoogle Scholar
  64. 64.
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–1308.Google Scholar
  65. 65.
    van der Werff YD, van der Houwen HK, Heijmans PJ, et al. Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest. 1997;111:1278–1284.PubMedCrossRefGoogle Scholar
  66. 66.
    Licker M, de Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97:1558–1565.PubMedCrossRefGoogle Scholar
  67. 67.
    Fernandez-Perez ER, Keegan MT, Brown DR, et al. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Luciano Gattinoni
    • 1
  • Eleonora Carlesso
    • 1
  • Federico Polli
    • 1
  1. 1.Dipartimento di Anestesiologia e Terapia IntensivaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations