Advertisement

Spin Waves pp 263-308 | Cite as

Nonlinear Interactions

  • Daniel D Stancil
  • Anil Prabhakar
Chapter

In Chapter 2, we introduced the Lagrangian and the Hamiltonian equations of motion. The variational formulation of Chapter 7 describes the Lagrangian as an energy density functional from which it is possible to derive the equations of motion. In the case of wave propagation, the physics of nonlinear wave interactions becomes mathematically tractable when we use the Hamiltonian formalism with the understanding that the classical spin waves can be represented by their complex amplitudes instead of Bose operators that would represent magnons. The Hamiltonian method is specifically suitable for the analysis of weakly interacting and weakly dissipative wave systems, where nonlinear interactions can be treated as higher order corrections to the lowest order wave solutions. The Hamiltonian yields first-order differential equations which are easier to solve than Lagrange’s equations.

Keywords

Nonlinear Interaction Spin Wave Canonical Variable American Physical Society Lifshitz Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Cash and D. D. Stancil, ‘Measurement of magnetostatic wave profiles using the interaction with transverse optical guided modes,’ IEEE Trans. Mag., vol. 32, p. 5188, 1996.CrossRefGoogle Scholar
  2. [2]
    D. J. Seagle, S. H. Charap, and J. O. Artman, ‘Foldover in YIG,’ J. Appl. Phys., vol. 57, p. 3706, 1985.CrossRefGoogle Scholar
  3. [3]
    Y. K. Fetisov, C. E. Patton, and V. T. Synogach, ‘Nonlinear ferromagnetic resonance and foldover in yttrium iron garnet thin films – inadequacy of the classical model,’ IEEE Trans. Mag., vol. 35, p. 4511, 1999.CrossRefGoogle Scholar
  4. [4]
    Y. T. Zhang, C. E. Patton, and M. V. Kogekar, ‘Ferromagnetic resonance foldover in single crystal YIG films – sample heating or Suhl instability,’ IEEE Trans. Mag., vol. 22, p. 993, 1986.CrossRefGoogle Scholar
  5. [5]
    A. Prabhakar and D. D. Stancil, ‘Auto-oscillation thresholds at the main resonance in ferrimagnetic films,’ Phys. Rev. B, vol. 57, p. 11483, 1998.CrossRefGoogle Scholar
  6. [6]
    M. Weiss, ‘Microwave and low-frequency oscillation due to resonance instabilities in ferrites,’ Phys. Rev. Lett., vol. 1, p. 239, 1958.CrossRefGoogle Scholar
  7. [7]
    H. Suhl, ‘The theory of ferromagnetic resonance at high signal powers,’ J. Phys. Chem. Solids, vol. 1, p. 209, 1957.CrossRefGoogle Scholar
  8. [8]
    X. Y. Zhang and H. Suhl, ‘Theory of auto-oscillations in high power ferromagnetic resonance,’ Phys. Rev. B, vol. 38, p. 4893, 1988.CrossRefGoogle Scholar
  9. [9]
    A. Prabhakar and D. D. Stancil, ‘Nonlinear microwave-magnetic resonator operated as a bistable device,’ J. Appl. Phys., vol. 85, p. 4859, 1999.CrossRefGoogle Scholar
  10. [10]
    Y. K. Fetisov and C. E. Patton, ‘Microwave bistability in a magnetostatic wave interferometer with external feedback,’ IEEE Trans. Mag., vol. 35, no. 2, pp. 1024–1036, Mar 1999.Google Scholar
  11. [11]
    H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. Cambridge, MA: Addison-Wesley, 2001.Google Scholar
  12. [12]
    C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics. New York, NY: Wiley & Sons, 1997.Google Scholar
  13. [13]
    E. Schlömann, ‘Ferromagnetic resonance at high power levels,’ Raytheon Corporation, Tech. Rep., 1959.Google Scholar
  14. [14]
    V. S. L’vov, Turbulence Under Parametric Excitation, Applications to Magnets. Berlin: Springer-Verlag, 1994.MATHGoogle Scholar
  15. [15]
    T. Holstein and H. Primakoff, ‘Field dependence of the intrinsic domain magnetization of a ferromagnet,’ Phys. Rev., vol. 58, no. 12, pp. 1098–1113, Dec 1940.Google Scholar
  16. [16]
    H. Benson and D. L. Mills, ‘Spin waves in thin films; dipolar effects,’ Phys. Rev., vol. 178, no. 2, pp. 839–847, Feb 1969.Google Scholar
  17. [17]
    S. M. Rezende and F. M. Aguiar, ‘Spin-wave instabilities, auto-oscillations, and chaos in yttrium-iron-garnet,’ Proc. IEEE, vol. 78, p. 893, 1990.CrossRefGoogle Scholar
  18. [18]
    P. Krivosik, N. Mo, S. Kalarickal, and C. E. Patton, ‘Hamiltonian formalism for two magnon scattering microwave relaxation: Theory and applications,’ J. Appl. Phys., vol. 101, p. 083901, 2007.CrossRefGoogle Scholar
  19. [19]
    H. Suhl, ‘Subsidiary absorption peaks in ferromagnetic resonance at high signal levels,’ Phys. Rev., vol. 101, pp. 1437–1438, 1956.CrossRefGoogle Scholar
  20. [20]
    P. H. Bryant, C. D. Jeffries, and K. Nakamura, ‘Spin-wave dynamics in a ferrimagnetic sphere,’ Phys. Rev. A, vol. 38, p. 4223, 1988.CrossRefGoogle Scholar
  21. [21]
    V. E. Zakharov, V. S. L’vov, and S. S. Starobinets, ‘Instability of monochromatic spin waves,’ Sov. Phys. Solid State, vol. 11, p. 2368, 1970.Google Scholar
  22. [22]
    P. Wigen, Ed., Nonlinear Phenomena and Chaos in Magnetic Materials. Singapore: World Scientific, 1994.Google Scholar
  23. [23]
    R. Marcelli and S. A. Nikitov, Eds., Nonlinear Microwave Signal Processing: Towards a New Range of Devices. Dordrecht: Kluwer Academic Publishers, 1996.Google Scholar
  24. [24]
    M. A. Tsankov, M. Chen, and C. E. Patton, ‘Forward volume wave microwave envelope solitons in yttrium iron garnet films: Propagation, decay and collision,’ J. Appl. Phys., vol. 76, p. 4274, 1994.CrossRefGoogle Scholar
  25. [25]
    G. P. Agrawal, Nonlinear Fiber Optics. New York, NY: Academic Press, 2006.Google Scholar
  26. [26]
    B. A. Kalinikos, N. G. Kovshikov, and A. N. Slavin, ‘Spin-wave solitons in ferromagnetic films: observation of a modulational instability of spin-waves during continuous excitation,’ JETP Lett, vol. 10, p. 392, 1984.Google Scholar
  27. [27]
    M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering. New York, NY: Cambridge University Press, 1991.MATHGoogle Scholar
  28. [28]
    S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, 5th ed. New York, NY: McGraw-Hill, 2005.Google Scholar
  29. [29]
    M. J. Lighthill, ‘Contributions to the theory of waves in nonlinear dispersive systems,’ J. Inst. Maths Applics., vol. 1, p. 269, 1965.CrossRefMathSciNetGoogle Scholar
  30. [30]
    B. Kalinikos and A. N. Slavin, ‘Theory of dipole exchange spin-wave spectrum for ferromagnetic films with mixed exchange boundary conditions,’ J. Phys. C: Solid State Phys., vol. 19, p. 7013, 1986.CrossRefGoogle Scholar
  31. [31]
    A. N. Slavin, ‘Thresholds of envelope soliton formation in a weakly dissipative medium,’ Phys. Rev. Lett., vol. 77, p. 4644, 1996.CrossRefGoogle Scholar
  32. [32]
    R. A. Stuadinger, P. Kabos, H. Xia, B. T. Faber, and C. E. Patton, ‘Calculation of the formation time for microwave magnetic envelope solitons,’ IEEE Trans. Mag., vol. 34, p. 2334, 1998.CrossRefGoogle Scholar
  33. [33]
    B. A. Kalinikos, N. G. Kovshikov, and C. E. Patton, ‘Decay free microwave magnetic envelope soliton pulse trains in yttrium iron garnet thin films,’ Phys. Rev. Lett., vol. 78, no. 14, pp. 2827–2830, 1997.Google Scholar
  34. [34]
    B. Kalinikos, N. V. Kovshikov, and C. E. Patton, ‘Self-generation of microwave magnetic envelope soliton trains in yttrium iron garnet thin films,’ Phys. Rev. Lett., vol. 80, p. 4301, 1998.CrossRefGoogle Scholar
  35. [35]
    B. A. Kalinikos, N. G. Kovshikov, and C. E. Patton, ‘Excitation of bright and dark microwave magnetic envelope solitons in a resonant ring,’ Appl. Phys. Lett., vol. 75, p. 265, 1999.CrossRefGoogle Scholar
  36. [36]
    M. Wu, B. A. Kalinikos, L. D. Carr, and C. E. Patton, ‘Observation of spin wave soliton fractals in magnetic film active feedback rings,’ Phys. Rev. Lett., 2006.Google Scholar
  37. [37]
    Y. Xu, G. Su, D. Xue, H. Xing, and F. shen Li, ‘Nonlinear surface spin waves on ferromagnetic media with inhomogeneous exchange anisotropies: solitonsolutions,’ Phys. Lett. A, vol. 279, pp. 385–390, 2001.Google Scholar
  38. [38]
    O. Büttner, M. Bauer, S. O. Demokritov, B. Hillebrands, Y. S. Kivshar, V. Grimalsky, Y. Rapoport, M. P. Kostylev, B. A. Kalinikos, and A. N. Slavin, ‘Spatial and spatiotemporal self-focusing of spin waves in garnet films observed by space- and time-resolved brillouin light scattering,’ J. Appl. Phys., vol. 87, pp. 5088–5090, 2000.CrossRefGoogle Scholar
  39. [39]
    R. Gong, Y. Cheng, and H. Li, ‘Variational analysis of evolution for magnetostatic envelope bright soliton with higher-order dispersion,’ J. Magn. Magn. Matl., vol. 313, pp. 122–126, 2007.CrossRefGoogle Scholar
  40. [40]
    B. Kalinikos and M. P. Kostylev, ‘Parametric amplification of spin wave envelope solitons in ferromagnetic films by parallel pumping,’ IEEE Trans. Mag., vol. 33, no. 5, p. 3445, 1997.Google Scholar
  41. [41]
    G. Gibson and C. Jeffries, ‘Observation of period doubling and chaos in spin-wave instabilities in yttrium iron garnet,’ Phys. Rev. A, vol. 29, p. 811, 1984.CrossRefGoogle Scholar
  42. [42]
    R. D. McMichael and P. E. Wigen, ‘High power ferromagnetic resonance without a degenerate spin-wave manifold,’ Phys. Rev. Lett., vol. 64, p. 64, 1990.CrossRefGoogle Scholar
  43. [43]
    A. Borovik-Romanov and S. Sinha, Eds., Spin Waves and Magnetic Excitations. Amsterdam: North Holland Physics, 1988.Google Scholar
  44. [44]
    M. Cottam, Ed., Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices. Singapore: World Scientific, 1994.Google Scholar
  45. [45]
    G. Srinivasan and A. N. Slavin, Eds., High Frequency Processes in Magnetic Materials. Singapore: World Scientific, 1995.Google Scholar
  46. [46]
    C. Robinson, Dynamical Systems. Boca Raton, FL CRC Press Inc., 1995.MATHGoogle Scholar
  47. [47]
    P. Glendinning, Stability, Instability and Chaos. Cambridge CambridgeUniversity Press., 1994.MATHGoogle Scholar
  48. [48]
    J. I. Neimark, Mathematical Models in Natural Science and Engineering. Berlin: Springer, 2003, ch. 4.MATHGoogle Scholar
  49. [49]
    T. Y. Li and J. A. Yorke, ‘Period three implies chaos,’ Amer. Math. Monthly, vol. 82, pp. 985–992, 1975.MATHCrossRefMathSciNetGoogle Scholar
  50. [50]
    A. Prabhakar and D. D. Stancil, ‘Variations in auto-oscillation frequency at the main resonance in rectangular YIG films,’ J. Appl. Phys., vol. 79, p. 5374, 1996.CrossRefGoogle Scholar
  51. [51]
    A. Prabhakar and D. D. Stancil, ‘Information dimension analysis of chaotic forward volume spin waves in a yttrium-iron-garnet thin film,’ J. Appl. Phys., vol. 87, p. 5091, 2000.CrossRefGoogle Scholar
  52. [52]
    R. Hegger and H. Kantz, ‘Practical implementation of nonlinear time series methods: The TISEAN package,’ Chaos, vol. 9, no. 2, pp. 413–435, 1999.Google Scholar
  53. [53]
    H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, ‘The analysis of observed chaotic data in physical systems,’ Rev. Mod. Phys., vol. 65, no. 4, p. 1331, 1993.Google Scholar
  54. [54]
    M. Kennel, R. Brown, and H. D. I. Abarbanel, ‘Determining embedding dimension for phase-space reconstruction using a geometrical construction,’ Phys. Rev. A, vol. 45, p. 3403, 1992.CrossRefGoogle Scholar
  55. [55]
    I. Procaccia and M. Shapiro, Eds., Chaos and Related Nonlinear Phenomena. New York: Plenum, 1987, ch. Practical Considerations in estimating dimension from time series data.Google Scholar
  56. [56]
    J. P. Eckmann and D. Ruelle, ‘Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems,’ Physica D, vol. 56, p. 185, 1992.MATHCrossRefMathSciNetGoogle Scholar
  57. [57]
    R. Badii and A. Politi, ‘Statistical description of chaotic attractors: the dimension function,’ J. Stat. Phys., vol. 40, p. 725, 1985.MATHCrossRefMathSciNetGoogle Scholar
  58. [58]
    E. J. Kostelich, ‘Nearest neighbour algorithm,’ personal communication.Google Scholar
  59. [59]
    H. N. Bertram, V. L. Safonov, and Z. Jin, ‘Thermal magnetization noise, damping fundamentals, and mode analysis: Application to a thin film GMR sensor,’ IEEE Trans. Mag., vol. 38, pp. 2514–2519, 2002.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Indian Institute of TechnologyChennaiIndia

Personalised recommendations