Skip to main content

Propagation Characteristics and Excitation of Dipolar Spin Waves

  • Chapter
  • First Online:
Spin Waves
  • 4174 Accesses

Chapter 5 treated the resonant frequencies, dispersion relations, and mode fields for various dipolar spin modes. In this chapter, we expand on the properties of dipolar spin waves in thin films and describe how to excite them. We first establish approximate expressions for the Poynting vector and energy velocity valid in the magnetostatic approximation. Next, we apply the phenomenological description of magnetic damping introduced in Chapter 3 to the problem of dipolar spin wave attenuation. Finally, we derive orthogonality and normalization conditions and use these relations to calculate the excitation of dipolar spin waves by thin wires and conducting strips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. S. Gupta and N. C. Srivastava, ‘Power flow and energy distribution of magnetostatic bulk waves in dielectric layered structure,’ J. Appl. Phys., vol. 50, p. 6697, 1979.

    Article  Google Scholar 

  2. S. S. Gupta, ‘Power flow and energy distribution of magnetostatic bulk and surface waves in dielectric layered structure,’ IEEE Trans. Mag., vol. MAG-18, p. 1639, 1982.

    Article  Google Scholar 

  3. D. D. Stancil, ‘Phenomenological propagation loss theory for the magnetostatic waves in thin ferrite films,’ J. Appl. Phys., vol. 59, p. 218, 1986.

    Article  Google Scholar 

  4. C. Vittoria and N. D. Wilsey, ‘Magnetostatic wave propagation loss in an anisotropic insulator,’ J. Appl. Phys, vol. 45, p. 414, 1974.

    Article  Google Scholar 

  5. A. D. Berk, ‘Dependence of the ferromagnetic resonance line width on the shape of the specimen,’ J. Appl. Phys, vol. 28, p. 190, 1957.

    Article  MATH  Google Scholar 

  6. D. J. Halchin, ‘Characterization of thin ferrite films using magnetostatic wave propagation,’ Ph.D. dissertation, North Carolina State University, 1987.

    Google Scholar 

  7. N. E. Buris, ‘Magnetostatic wave propagation in inhomogeneous and anisotropic ferrite thin films,’ Ph.D. dissertation, North Carolina State University, 1986.

    Google Scholar 

  8. J. D. Adam and S. N. Bajpai, ‘Magnetostatic forward volume wave propagation in YIG strips,’ IEEE Trans. Magn., vol. 18, p. 1598, 1982.

    Article  Google Scholar 

  9. P. R. Emtage, ‘Interaction of magnetostatic waves with a current,’ J. Appl. Phys., vol. 49, p. 4475, 1978.

    Article  Google Scholar 

  10. M. Cottam, Ed., Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices. Singapore: World Scientific, 1994.

    Google Scholar 

  11. A. K. Ganguly and D. C. Webb, ‘Microstrip excitation of magnetostatic surface waves, theory and experiment,’ IEEE Microw. Theory Tech., vol. MTT-23, p. 998, 1975.

    Article  Google Scholar 

  12. A. K. Ganguly, D. C. Webb, and C. Banks, ‘Complex radiation impedance of microstrip-excited magnetostatic-surface waves,’ IEEE Trans. Microw. Theory Tech., vol. 26, p. 444, 1978.

    Article  Google Scholar 

  13. B. A. Kalinikos and V. F. Dmitriev, ‘Self-consistent calculation of radiation resistance of microstrip transducer of spin waves in a perpendicularly magnetized ferromagnetic film,’ Zh. Tech. Fiz, vol. 58, p. 248, 1988.

    Google Scholar 

  14. B. A. Kalinikos and V. F. Dmitriev, ‘Self-consistent theory of excitation of spin waves by microstrip transducer in tangentially magnetized layered structure,’ Radiotekhnica Electronica, vol. 33, p. 2248, 1988.

    Google Scholar 

  15. J. P. Parekh, ‘Theory of magnetostatic forward volume wave excitation,’ J. Appl. Phys., vol. 50, p. 2452, 1979.

    Article  Google Scholar 

  16. J. C. Sethares, ‘Magnetostatic surface wave transducers,’ IEEE Trans. Microw. Theory Tech., vol. 27, p. 902, 1979.

    Article  MathSciNet  Google Scholar 

  17. J. C. Sethares and I. J. Weinberg, ‘Apodization of variable coupling MSSW transducers,’ J. Appl. Phys., vol. 50, p. 2458, 1979.

    Article  Google Scholar 

  18. J. C. Sethares and I. J. Weinberg, ‘Theory of MSW transducers,’ Circ. Syst. Signal Process, vol. 4, p. 41, 1985.

    Article  Google Scholar 

  19. J. H. Wu, C. V. Smith, J. H. Collins, and J. M. Owens, ‘Bandpass filtering with multibar magnetostatic surface wave microstrip transducers,’ Electron. Lett., vol. 13, p. 610, 1977.

    Article  Google Scholar 

  20. J. H. Wu, C. V. Smith, and J. M. Owens, ‘Bandpass filtering and input impedance characterization for driven multielement transducer pair-delay line magnetostatic wave devices,’ J. Appl. Phys., vol. 50, p. 2455, 1979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel D Stancil .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Stancil, D.D., Prabhakar, A. (2009). Propagation Characteristics and Excitation of Dipolar Spin Waves. In: Spin Waves. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77865-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77865-5_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77864-8

  • Online ISBN: 978-0-387-77865-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics