Advertisement

Spin Waves pp 139-168 | Cite as

Magnetostatic Modes

  • Daniel D Stancil
  • Anil Prabhakar
Chapter

We saw in Chapter 4 that the equations of magneto-quasi-statics are useful for describing waves when the wavelength in the medium is very different from that of an ordinary electromagnetic wave at the same frequency. We will now elaborate on this idea and show how the magneto-quasi-static approximation can be used to analyze modes in a variety of geometries.

Keywords

Dispersion Relation Spin Wave Volume Wave Magnetostatic Wave Magnetostatic Surface Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics. New York: McGraw-Hill, 1962.Google Scholar
  2. [2]
    R. F. Soohoo, Microwave Magnetics. New York: Harper and Row, 1985.Google Scholar
  3. [3]
    M. S. Sodha and N. C. Srivastava, Microwave Propagation in Ferrimagnetics. New York: Harper and Row, 1981.Google Scholar
  4. [4]
    R. W. Damon and J. R. Eshbach, ‘Magnetostatic modes of a ferromagnet slab,’ J. Phys. Chem. Solids, vol. 19, p. 308, 1961.CrossRefGoogle Scholar
  5. [5]
    R. W. Damon and H. van de Vaart, ‘Propagation of magnetostatic spin waves at microwave frequencies in a normally magnetized disk,’ J. Appl. Phys., vol. 36, p. 3453, 1965.CrossRefGoogle Scholar
  6. [6]
    L. R. Walker, ‘Resonant modes of ferromagnetic spheroids,’ J. Appl. Phys., vol. 2, p. 318, 1958.CrossRefGoogle Scholar
  7. [7]
    E. H. Turner, ‘Interaction of phonons and spin waves in yttrium iron garnet,’ Phys. Rev. Lett., vol. 5, p. 100, 1960.CrossRefGoogle Scholar
  8. [8]
    C. Kittel, ‘Excitation of spin waves in a ferromagnet by a uniform rf field,’ Phys. Rev., vol. 110, p. 1295, 1958.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    M. H. Seavey and P. E. Tannenwald, ‘Direct observation of spin-wave resonance,’ Phys. Rev. Lett., vol. 1, pp. 168–169, 1958.CrossRefGoogle Scholar
  10. [10]
    J. Matthews and R. L. Walker, Mathematical Methods of Physics. Menlo Park, CA: W. A. Benjamin Inc., 1970.Google Scholar
  11. [11]
    E. Schlömann, ‘A sum rule concerning the inhomogeneous demagnetizing field in nonellipsoidal samples,’ J. Appl. Phys., vol. 33, p. 2825, 1962.MATHCrossRefGoogle Scholar
  12. [12]
    J. P. Parekh, K. W. Chang, and H. S. Tuan, ‘Propagation characteristics of magnetostatic waves,’ Circ. Syst. Signal Process, vol. 4, p. 9, 1985.CrossRefGoogle Scholar
  13. [13]
    B. A. Kalinikos, ‘Excitation of propagating spin waves in ferromagnetic films,’ IEE Proc., vol. 127, no. H, pp. 4–10, 1980.Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Indian Institute of TechnologyChennaiIndia

Personalised recommendations