Spin Waves pp 67-110 | Cite as

Magnetic Susceptibilities


The previous chapters concentrated on the origins of magnetic moments in individual ions or atoms and collective excitations of spin systems coupled by the exchange interaction. In this chapter, we will discuss the magnetic properties of macroscopic media composed of very large numbers of individual moments and the dependence of these properties on the magnetic field. Specifically, we are interested in the net magnetization (magnetic dipole moment per unit volume) that exists either spontaneously or in response to an applied magnetic field.


Magnetic Susceptibility Easy Axis Magnetocrystalline Anisotropy Ferromagnetic Resonance Yttrium Iron Garnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Brailsford, Physical Principles of Magnetism. London: Van Nostrand, 1966.Google Scholar
  2. [2]
    N. Ashcroft and N. D. Mermin, Solid State Physics. New York: Holt, Rinehart and Winston, 1976.Google Scholar
  3. [3]
    C. Kittel, Introduction to Solid State Physics, 8th ed. New York: John Wiley & Sons, 2005.Google Scholar
  4. [4]
    J. S. Smart, Effective Field Theories of Magnetism. Philadelphia: W. B. Saunders, 1966.Google Scholar
  5. [5]
    B. T. Matthias and R. M. Bozorth, ‘Ferromagnetic interaction in EuO,’ Phys. Rev. Lett., vol. 7, p. 160, 1961.CrossRefGoogle Scholar
  6. [6]
    D. K. Cheng, Fundamentals of Engineering Electromagnetics. Reading, MA: Addison Wesley, 1993.Google Scholar
  7. [7]
    J. Als-Nielsen, O. W. Dietrich, and L. Passell, ‘Neutron scattering from the Heisenberg ferromagnets EuO and EuS. II. Static critical properties,’ Phys. Rev. B, vol. 14, p. 4908, 1976.CrossRefGoogle Scholar
  8. [8]
    E. E. Anderson, ‘Molecular field model and magnetization of YIG,’ Phys. Rev., vol. 134, p. A1581, 1964.CrossRefGoogle Scholar
  9. [9]
    W. H. von Aulock and A. S. Boxer, Eds., Handbook of Microwave Ferrite Materials. New York: Academic Press, 1965.Google Scholar
  10. [10]
    G. Winkler, Magnetic Garnets. Braunschweig: Vieweg and Sohn, 1981.Google Scholar
  11. [11]
    E. P. Wolfharth, Ed., Ferro-magnetic Materials. New York: North-Holland, 1980, vol. 2.Google Scholar
  12. [12]
    L. Passell, O. W. Dietrich, and J. Als-Nielsen, ‘Neutron scattering from the Heisenberg ferromagnets EuO and EuS I. The exchange constants,’ Phys. Rev. B, vol. 14, p. 4897, 1976.CrossRefGoogle Scholar
  13. [13]
    J. H. Van Vleck and W. G. Penney, ‘The theory of the paramagnetic rotation and susceptibility in manganous and ferric salts,’ Phil. Mag., vol. 17, p. 961, 1934.Google Scholar
  14. [14]
    C. Vittoria, G. C. Bailey, R. C. Barker, and A. Yelon, ‘Ferromagnetic resonance field and linewidth in an anisotropic magnetic metallic medium,’ Phys. Rev. B, vol. 7, p. 2112, 1973.CrossRefGoogle Scholar
  15. [15]
    H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. Cambridge, MA: Addison-Wesley, 2001.Google Scholar
  16. [16]
    J. Matthews and R. L. Walker, Mathematical Methods of Physics. Menlo Park, CA: W. A. Benjamin Inc., 1970.Google Scholar
  17. [17]
    B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics. New York: McGraw-Hill, 1962.Google Scholar
  18. [18]
    M. S. Sodha and N. C. Srivastava, Microwave Propagation in Ferrimagnetics. New York: Harper and Row, 1981.Google Scholar
  19. [19]
    R. F. Sooho, Microwave Magnetics. New York: Harper and Row, 1985.Google Scholar
  20. [20]
    O. G. Vendik, B. A. Kalinikos, and D. N. Chartorizhski, ‘Instability of spin waves in tangentially magnetized ferromagnetic films,’ Soviet Phys. Solid State, vol. 19, p. 222, 1977.Google Scholar
  21. [21]
    O. G. Vendik and D. N. Chartorizhski, ‘Spin-wave spectrum in a thin ferromagnetic film in a rectangular waveguide,’ Soviet Phys. Solid State, vol. 11, p. 1957, 1970.Google Scholar
  22. [22]
    D. D. Stancil, ‘Magnetostatic waves in non-uniform bias fields including exchange effects,’ IEEE Trans. Mag., vol. MAG-16, p. 1153, 1980.CrossRefGoogle Scholar
  23. [23]
    A. Morrish, The Physical Principles of Magnetism. New York: IEEE Press, 2001.Google Scholar
  24. [24]
    L. Spinu, I. Dumitru, A. Stancu, and D. Cimpoesu, ‘Transverse susceptibility as the low-frequency limit of ferromagnetic resonance,’ J. Magn. Magn. Mater., vol. 296, pp. 1–8, 2006.CrossRefGoogle Scholar
  25. [25]
    L. Landau and L. Lifshitz, Phys. Zeit. Sowjetunion, vol. 8, p. 153, 1935.MATHGoogle Scholar
  26. [26]
    T. A. Gilbert, ‘Equation of motion of magnetization,’ Armor Research Foundation, Chicago, IL, Tech. Rep. 11, January 1955.Google Scholar
  27. [27]
    D. D. Stancil, ‘Phenomenological propagation loss theory for the magnetostatic waves in thin ferrite films,’ J. Appl. Phys., vol. 59, p. 218, 1986.CrossRefGoogle Scholar
  28. [28]
    E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. Soc. London, 240A, pp. 599–642, 1948.Google Scholar
  29. [29]
    W. F. Brown Jr., Micromagnetics, ser. Interscience Tracts on Physics and Astronomy. New York: Interscience Publishers, 1963, vol. 18.Google Scholar
  30. [30]
    J.-G. Zhu and H. N. Bertram, “Micromagnetic studies of thin metallic films,” J. Appl. Phys., vol. 63, p. 3248, 1988.Google Scholar
  31. [31]
    S. W. Yuan and H. N. Bertram, ‘Magnetoresistive heads for ultra high density recording,’ IEEE Trans. Mag., vol. 29, no. 6, p. 3811, Nov. 1993.Google Scholar
  32. [32]
    S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, 5th ed. McGraw-Hill, 2005.Google Scholar
  33. [33]
    M. d’Aquino, C. Serpico, and G. Miano, ‘Geometrical integration of Landau - Lifshitz - Gilbert equation based on the mid-point rule,’ J. Comput. Phys., vol. 209, pp. 730–753, 2005.MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    J. C. Mallinson, ‘Damped gyromagnetic switching,’ IEEE Trans. Magn., vol. 36, p. 1976, 2000.CrossRefGoogle Scholar
  35. [35]
    J. C. Mallinson, ‘On damped gyromagnetic precession,’ IEEE Trans. Mag., vol. MAG-23, no. 4, p. 2003, 1987.CrossRefGoogle Scholar
  36. [36]
    L. Berger, ‘Emission of spin waves by a magnetic multilayer traversed by a current,’ Phys. Rev. B, vol. 54, p. 9353, 1996.CrossRefGoogle Scholar
  37. [37]
    J. C. Slonczewski, ‘Excitation of spin waves by an electric current,’ J. Magn. Magn. Mat., vol. 195, p. L261, 1999.CrossRefGoogle Scholar
  38. [38]
    R. Kubo and T. Nagamiya, Solid State Physics. New York: McGraw-Hill, 1969.Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Indian Institute of TechnologyChennaiIndia

Personalised recommendations