Skip to main content

Novel Applications

  • Chapter
  • First Online:
Spin Waves

Gedanken (or thought) experiments are often followed by practical demonstrations of underlying physics. Once laboratory experiments establish the physics, we could witness the emergence of a new technology. In parallel, as existing technologies mature, there is a rebirth of established ideas with the possibility of new applications. This chapter attempts to describe a few areas of current research in spin-waves, where the fate of novel physics and emerging technology are closely intertwined. For example, the advent of submicron lithographic techniques has given rise to nano-contact spin-wave generation structures using current-driven spin-transfer torques. Also, an improved understanding of spin-wave excitations helps describe noise in patterned nano-structures, and new techniques such as the Magneto-Optic Kerr Effect (MOKE) make it possible to probe the modes of patterned structures. Finally, the properties of backward spin-waves make it possible to observe the long-predicted inverse Doppler effect. Since these are all “hot topics,” we cannot do full justice to them or cover all the frontier areas of research. However, in this chapter, we shall attempt to provide self-contained descriptions of a few topics while referring the reader to recently published literature for a more complete account of the theoretical and technological nuances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Slonczewski, ‘Current-driven excitation of magnetic multilayers,’ J. Magn. Magn. Matl., vol. 159, p. L1, 1996.

    Article  Google Scholar 

  2. L. Berger, ‘Emission of spin-waves by a magnetic multilayer traversed by a current,’ Phys. Rev. B, vol. 54, p. 9353, 1996.

    Article  Google Scholar 

  3. M. B. Stearns, ‘Simple explanation of tunneling spin-polarization of Fe, Co, Ni and its alloys,’ J. Magn. Magn. Matl., vol. 5, pp. 167–171, 1977.

    Article  Google Scholar 

  4. W. H. Butler, O. Heinonen, and X.-G. Zhang, The Physics of Ultra-High-Density Magnetic Recording. Berlin: Springer-Verlag, 2001, ch. 10.

    Google Scholar 

  5. N. Spaldin, Magnetic Materials – Fundamentals and Device Applications. Cambridge: Cambridge University Press, 2003, ch. 6.

    Google Scholar 

  6. H. Imamura and S. Maekawa, ‘Theory of spin-dependent tunneling,’ in Handbook of Magnetism and Advanced Magnetic Materials: Fundamentals and Theory, H. Krommüller and S. Parkin, Eds. New York, NY: John Wiley & Sons, 2007.

    Google Scholar 

  7. E. Merzbacher, Quantum Mechanics, 3rd ed. New York, NY: John Wiley & Sons, 1998.

    Google Scholar 

  8. K. Mita, ‘Virtual probability current associated with the spin,’ Am. J. Phys., vol. 68, p. 259, 2000.

    Article  Google Scholar 

  9. M. Stiles and A. Zangwill, ‘Anatomy of spin-transfer torque,’ Phys. Rev. B, vol. 66, p. 014407, 2002.

    Article  Google Scholar 

  10. S. M. Rezende, F. M. de Aguiar, and A. Azevedo, ‘Spin-wave theory for the dynamics induced by direct currents in magnetic multilayers,’ Phys. Rev. Lett., vol. 94, p. 037202, 2005.

    Article  Google Scholar 

  11. M. Tsoi, A. G. M. Jansen, J. Bass1, W.-C. Chiang, M. Seck1, V. Tsoi, and P. Wyder, ‘Excitation of a magnetic multilayer by an electric current,’ Phys. Rev. Lett., vol. 80, pp. 4281–4284, 1998.

    Google Scholar 

  12. J. C. Slonczewski, ‘Excitation of spin-waves by an electric current,’ J. Magn. Magn. Matl,, vol. 195, p. L261, 1999.

    Article  Google Scholar 

  13. J. Z. Sun, ‘Spin angular momentum transfer in current-perpendicular nanomagnetic junctions,’ IBM J. Res. Dev., vol. 50, pp. 81–100, 2006.

    Article  Google Scholar 

  14. I. N. Krivorotov, N. C. Emley, J. C. Sankey, S. I. Kiselev, D. C. Ralph, and R. A. Buhrman, ‘Time-domain measurements of nanomagnet dynamics driven by spin-transfer torquess,’ Science, vol. 307, p. 228, 2005.

    Article  Google Scholar 

  15. S. M. Rezende, F. M. de Aguiar, R. L. Rodriguez-Suarez, and A. Azevedo, ‘Mode locking of spin-waves excited by direct currents in microwave nano-oscillators,’ Phys. Rev. Lett., vol. 98, no. 8, p. 087202, 2007.

    Google Scholar 

  16. M. V. Costache, S. M. Watts, M. Sladkov, C. H. van der Wal, and B. J. van Wees, ‘Large cone angle magnetization precession of an individual nanopatterned ferromagnet with dc electrical detection,’ Appl. Phys. Lett., vol. 89, p. 232115, 2006.

    Google Scholar 

  17. L. Berger, ‘Generation of dc voltages by a magnetic multilayer undergoing ferromagnetic resonance,’ Phys. Rev. B, vol. 59, p. 11465, 1999.

    Article  Google Scholar 

  18. H. N. Bertram, V. L. Safonov, and Z. Jin, ‘Thermal magnetization noise, damping fundamentals, and mode analysis: Application to a thin film GMR sensor,’ IEEE Trans. Mag., vol. 38, pp. 2514–2519, 2002.

    Article  Google Scholar 

  19. F. Reif, Fundamentals of Statistical and Thermal Physics. New york McGraw Hill Intl. Ed., 1985.

    Google Scholar 

  20. A. Barman, V. V. Kruglyak, R. J. Hicken, A. Kundrotaite, and M. Rahman, ‘Anisotropy, damping, and coherence of magnetization dynamics in a 10 μm square ni81fe19 element,’ Appl. Phys. Lett., vol. 82, pp. 3065–3067, 2003.

    Article  Google Scholar 

  21. J. D. Jackson, Classical Electrodynamics, 3rd ed. Singapore: John Wiley and Sons, 1999.

    MATH  Google Scholar 

  22. V. G. Veslago, ‘The electrodynamics of substances with simultaneously negative values of ε and μ,’ Sov. Phys. Usp., vol. 10, p. 509, 1968.

    Article  Google Scholar 

  23. N. L. Koros, D. D. Stancil, and N. Bilaniuk, ‘Linear motion sensor using the Doppler effect with magnetostatic waves,’ J. Appl. Phys., vol. 67, p. 511, 1990.

    Article  Google Scholar 

  24. D. D. Stancil, B. E. Henty, A. G. Cepni, and J. P. V. Hof, ‘Observation of an inverse Doppler shift from left-handed dipolar spin-waves,’ Phys. Rev. B (Condensed Matter and Materials Physics), vol. 74, no. 6, p. 060404, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel D Stancil .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Stancil, D.D., Prabhakar, A. (2009). Novel Applications. In: Spin Waves. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77865-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77865-5_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77864-8

  • Online ISBN: 978-0-387-77865-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics