Advertisement

Introduction to Magnetism

  • Daniel D Stancil
  • Anil Prabhakar
Chapter

Spin waves are excitations that exist in magnetic materials and we begin our discussion with an introduction to magnetism. Many aspects of magnetism can be understood in terms of classical analogs, but phenomena such as the quantization of angular momentum and certain interactions between spins are fundamentally quantum mechanical in nature. Consequently, a brief introduction to quantum mechanics is included as well. We will draw from both classical and quantum mechanical models as we gain insight into the basic theory of magnetism.

Keywords

Angular Momentum Orbital Angular Momentum Total Angular Momentum Gyromagnetic Ratio Yttrium Iron Garnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Brailsford, Physical Principles of Magnetism. London: Van Nostrand, 1966.Google Scholar
  2. [2]
    S. Chikazumi and S. H. Charap, Physics of Magnetism. Huntington, NY: R. E. Krieger Publishing Co., 1978.Google Scholar
  3. [3]
    D. H. Martin, Magnetism in Solids. Cambridge, MA: M.I.T. Press, 1967.Google Scholar
  4. [4]
    D. C. Mattis, The Theory of Magnetism I: Statics and Dynamics. New York: Springer-Verlag, Berlin, 1981.Google Scholar
  5. [5]
    N. Ashcroft and N. D. Mermin, Solid State Physics. New York: Holt, Rinehart and Winston, 1976.Google Scholar
  6. [6]
    C. Kittel, Introduction to Solid State Physics, 8th ed. New York: John Wiley & Sons, 2005.Google Scholar
  7. [7]
    N. Bohr, Studies on the Electron Theory of Metals. Doctoral thesis, University of Copenhagen, 1911.Google Scholar
  8. [8]
    H.-J. van Leeuwen, Doctoral thesis, University of Leiden,1911. Summary in Hendrika Johanna van Leeuwen, “Problèmes de la théorie électronique du magnétisme”, Journal de Physique et le Radium, vol. 2 No. 12 p. 361 (1921).Google Scholar
  9. [9]
    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics. Reading, MA: Addison-Wesley, 1964, vol. I.Google Scholar
  10. [10]
    H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. Cambridge, MA: Addison-Wesley, 2001.Google Scholar
  11. [11]
    W. Gerlach and O. Stern, Z. Phys., vol. 9, p. 349, 1922.CrossRefGoogle Scholar
  12. [12]
    G. E. Uhlenbeck and S. Goudsmit, Naturwiss., vol. 19, p. 953, 1925.Google Scholar
  13. [13]
    H. N. Russell and F. A. Saunders, “New regularities in the spectra of the alkaline earths,” Astrophys. J., vol. 61, p. 38, 1925.Google Scholar
  14. [14]
    R. M. Eisberg, Fundamentals of Modern Physics. New York: John Wiley & Sons, 1961.MATHGoogle Scholar
  15. [15]
    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics. Reading, MA: Addison-Wesley, 1964, vol. III.Google Scholar
  16. [16]
    L. I. Schiff, Quantum Mechanics. New York: McGraw-Hill, 1968.Google Scholar
  17. [17]
    E. Merzbacher, Quantum Mechanics, 3rd ed. New York: John Wiley & Sons, 1998.Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Indian Institute of TechnologyChennaiIndia

Personalised recommendations