Maize Genome Structure and Evolution

  • Jeffrey L. Bennetzen

The nuclear genome of maize contains the most complex structure of any yet studied in depth, with small gene islands immersed in seas of nested transposable elements. The DNA between genes is exceptionally unstable in maize, such that the ancestral existence of most or all intergenic TE insertions is erased within a few million years. The genes appear to show a very high mobility that is partly an outcome of the mis-annotation of TEs as genes and the presence of ˜10,000 pseudogenes, compared to ˜35,000 true protein-encoding genes and ˜210,000 TE genes. The primary mechanisms of genomic structural change, namely DNA breakage/repair, recombination and transposition, have been identified. All of these processes have been found to be exceptionally active for genome rearrangement in maize, compared to other angiosperms. Further research is needed on the specificities exhibited by these mechanisms, on the reasons for their very high rates of activity in maize, and on the biological outcomes of this continuous genomic fluidity.


Transposable Element Long Terminal Repeat Maize Genome Long Terminal Repeat Retrotransposons Maize Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ananiev, E.V., R.L. Phillips and H.W. Rines (1998a) A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: Are chromosome knobs megatransposons? Proc. Natl. Acad. Sci. USA 95: 10785–10790.CrossRefGoogle Scholar
  2. Ananiev, E.V., R.L. Phillips and H.W. Rines (1998b) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc. Natl. Acad. Sci. USA 95: 13073–13078.CrossRefGoogle Scholar
  3. Avramova, Z., P. SanMiguel, E. Georgieva and J.L. Bennetzen (1995) Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1. Plant Cell 7: 1667–1680.Google Scholar
  4. Avramova, Z., A. Tikhonov, P. SanMiguel, Y.-K. Jin, C. Liu, S.-S. Woo, R.A. Wing and J.L. Bennetzen (1996) Gene identification in a complex chromosomal continuum by local genomic cross-referencing. Plant J. 10: 1163–1168.PubMedCrossRefGoogle Scholar
  5. Babushok, D.V., K. Ohshima, E.M. Ostertag, X. Chen, Y. Wang, P.K. Mandal, N. Okada, C.S. Abrams and H.H. Kazazian Jr. (2007) A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids. Genome Res. 17: 1129–1138.PubMedCrossRefGoogle Scholar
  6. Banerji, J., S. Rusconi and W. Schaffner (1981) Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27: 299–308.PubMedCrossRefGoogle Scholar
  7. Bennett, M.D. (1972) Nuclear DNA content and minimum generation time. Proc. Royal Soc. London, Series B 181: 109–135.CrossRefGoogle Scholar
  8. Bennetzen, J. L. (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42: 251–269.PubMedCrossRefGoogle Scholar
  9. Bennetzen, J. L. (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr. Opin. Gen. Dev. 15:1–7.CrossRefGoogle Scholar
  10. Bennetzen, J. L., W. E. Brown and P. S. Springer (1988) DNA modification within and flanking maize transposable elements. In O.E. Nelson, Jr., ed., Plant Transposable Elements. Plenum Press, New York, pp. 237–250.Google Scholar
  11. Bennetzen, J.L., C. Coleman, J. Ma, R. Liu and W. Ramakrishna (2004) Consistent over-estimation of gene number in complex plant genomes. Curr. Opin. Plant Biol. 7: 732–736.PubMedCrossRefGoogle Scholar
  12. Bennetzen, J.L. and E.A. Kellogg (1997) Do plants have a one way ticket to genomic obesity? Plant Cell 9: 1509–1514.PubMedCrossRefGoogle Scholar
  13. Bennetzen, J. L. and J. Ma (2003) The genetic colinearity of rice and other cereals based on genomic sequence analysis. Curr. Opin. Plant Biol. 6:128–133.CrossRefGoogle Scholar
  14. Bennetzen, J.L., J. Ma and K.M. Devos (2005) Mechanisms of recent genome size variation in flowering plants. Annals Bot. 95: 127–132.CrossRefGoogle Scholar
  15. Bennetzen, J.L., R. Liu, J. Ma and A. Pontaroli (2005) Maize genome structure and rearrangement. Maydica 50: 387–392.Google Scholar
  16. Brink, R.A. (1958) Paramutation at the R locus in maize. Cold Spring Harbor Symp. Quant. Biol. 23: 379–391.Google Scholar
  17. Bruggmann, R., A.K. Bharti, H. Gundlach, J. Lai, S. Young, A.C. Pontaroli, F. Wei, G. Haberer, G. Fuks, C. Du, C. Raymond, M.C. Estep, R. Liu, J.L. Bennetzen, A.P. Chan, P.D. Rabinowicz, J. Quackenbush, W.B. Barbazuk, R.A. Wing, B. Birren, C. Nusbaum, S. Rounsley, K.F.X. Mayer and J. Messing (2006) Uneven chromosome contraction and expansion in the maize genome. Genome Res. 16: 1241–1251.PubMedCrossRefGoogle Scholar
  18. Bureau, T.E., S.E. White and S.R. Wessler (1994) Transduction of a cellular gene by a plant retroelement. Cell 77: 479–480.PubMedCrossRefGoogle Scholar
  19. Chen, M., P. SanMiguel, A.C. de Oliveira, S.-S. Woo, H. Zhang, R.A. Wing and J.L. Bennetzen (1997) Microcolinearity in the sh2-homologous regions of the maize, rice and sorghum genomes. Proc. Natl. Acad. Sci. USA 94: 3431–3435.PubMedCrossRefGoogle Scholar
  20. Clark, R.M., E. Linton, J. Messing and J.F. Doebley (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc. Natl. Acad. Sci. USA 101: 700–707.CrossRefGoogle Scholar
  21. Cone, K.C, R.J. Schmidt, B. Burr and F. Burr (1988) Advantages and limitations of using Spm as a transposon tag. In O.E. Nelson, Jr., ed., Plant Transposable Elements. Plenum Press, New York, pp. 149–159.Google Scholar
  22. Cooper, D.C. and R.A. Brink (1937) Chromosome homology in races of maize from different geographical regions. Am. Nat. 71: 582–587.CrossRefGoogle Scholar
  23. Cowan, R.K., D.R. Hoen, D.J. Schoen and T.E. Bureau (2005) MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms. Mol. Biol. Evol. 22: 2084–2089.PubMedCrossRefGoogle Scholar
  24. Craig, N.L. (1996) Transposon Tn7. Curr. Top. Microbiol. Immunol. 204: 27–48.PubMedGoogle Scholar
  25. Cresse, A. D., S. H. Hulbert, W. E. Brown, J. R. Lucas and J. L. Bennetzen (1995) Mu1-related transposable elements of maize preferentially insert into low copy number DNA. Genetics 140:315–324.PubMedGoogle Scholar
  26. Dawe, K. and S. Henikoff (2006) Centromeres put epigenetics in the driver's seat. Trends Biochem. Sci. 31: 662–669.PubMedCrossRefGoogle Scholar
  27. Devos, K.M., J.K.M. Brown and J.L. Bennetzen (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12: 1075–1079.Google Scholar
  28. Dubcovsky, J., W. Ramakrishna, P. SanMiguel, C.S. Busso, L. Yan, B. A. Shiloff and J.L. Bennetzen (2001) Comparative sequence analysis of colinear barley and rice BACs. Plant Physiol. 125: 1342–1353.PubMedCrossRefGoogle Scholar
  29. Ecker, J.R. and R.W. Davis (1986) Inhibition of gene expression in plant cells by expression of antisense RNA. Proc. Natl. Acad. Sci. USA 83: 5372–5376.PubMedCrossRefGoogle Scholar
  30. Eickbush, T.H. (1997) Telomerase and retrotransposons: Which came first? Science 277: 911–912.PubMedCrossRefGoogle Scholar
  31. Feuillet, C., A. Penger, K. Gellner, A. Mast and B. Keller (2001) Molecular evolution of receptorlike kinase genes in hexaploid wheat. Independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci. Plant Physiol. 125: 1304–1313.PubMedCrossRefGoogle Scholar
  32. Fu, H. and H.K. Dooner (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc. Natl. Acad. Sci. USA 99: 9573–9578.PubMedGoogle Scholar
  33. Gale, M.D., and K.M. Devos (1998) Plant comparative genetics after 10 years. Science 282: 656–659.PubMedCrossRefGoogle Scholar
  34. Gaut, B.S. and J.F. Doebley (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 94: 6809–6814.PubMedCrossRefGoogle Scholar
  35. Gilbert, W. (1978) Why genes in pieces? Nature 271: 501.PubMedCrossRefGoogle Scholar
  36. Girard, L. and M. Freeling (1999) Regulatory changes as a consequence of transposon insertion. Dev. Genet. 25: 291–296.PubMedCrossRefGoogle Scholar
  37. Goodman, M.M., C.W. Stuber, K. Newton and H.H. Weissinger (1980) Linkage relationships of 19 enzyme loci in maize. Genetics 96: 697–710.PubMedGoogle Scholar
  38. Gregory, T.R. (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann. Bot. 95: 133–146.PubMedCrossRefGoogle Scholar
  39. Gupta, S., A. Gallavotti, G.A. Stryker, R.J. Schmidt and S.K. Lal (2005) A novel class of Helitron-related transposable elements in maize contain portions of multiple pseudogenes. Plant Mol. Biol. 57: 115–27.PubMedCrossRefGoogle Scholar
  40. Haberer, G., S. Young, A.K. Bharti, H. Gundlach, C. Raymond, G. Fuks, E. Butler, R.A. Wing, S. Rounsley, B. Birren, C. Nusbaum, K.F.X. Mayer and J. Messing (2005) Structure and architecture of the maize genome. Plant Phys. 139: 1612–1624.CrossRefGoogle Scholar
  41. Hake, S. and V. Walbot (1980) The genome of Zea mays, its organization and homology to related species. Chromosoma 79: 251–270.CrossRefGoogle Scholar
  42. Hamilton, A.J. and D.C. Baulcombe (1999) A novel species of small antisense RNA in post-transcriptional gene silencing. Science 286: 950–952.PubMedCrossRefGoogle Scholar
  43. Hawkins, J.S., HR. Kim, J.D. Nason, R.A. Wing and J. F. Wendel (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 16: 1252–1261.PubMedCrossRefGoogle Scholar
  44. Helentjaris, T., G. King, M. Slocum, C. Siedenstrang and S. Wedman (1985) Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant. Mol. Biol. 5: 109–118.CrossRefGoogle Scholar
  45. Helentjaris, T., D. Weber, and S. Wright (1988). Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphism. Genetics 118: 353–363.PubMedGoogle Scholar
  46. Henikoff, S., K. Ahmad and H.S. Malik (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.PubMedCrossRefGoogle Scholar
  47. Hsu, F. C., C.J. Wang, C.M. Chen, H.Y. Hu and C.C. Chen (2003) Molecular characterization of a family of tandemly repeated DNA sequences, TR-1, in heterochromatic knobs of maize and its relatives. Genetics 164: 1087–1097.PubMedGoogle Scholar
  48. Hudson, M.E., D.R. Lisch and P.H. Quail (2003) The FHY3 and FAR1 genes encode transposaserelated proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J. 34: 453–471.PubMedCrossRefGoogle Scholar
  49. Ilic, K., P.J. SanMiguel and J.L. Bennetzen (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum and rice genomes. Proc. Natl. Acad. Sci. USA 100: 12265–12270.PubMedCrossRefGoogle Scholar
  50. IRGSP [International Rice Genome Sequencing Project] (2005) The map-based sequence of the rice genome. Nature 436: 793–800.CrossRefGoogle Scholar
  51. Jiang, N., Z. Bao, X. Zhang, S.R. Eddy and S.R. Wessler (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431: 569–573.PubMedCrossRefGoogle Scholar
  52. Jin, Y.-K. and J.L. Bennetzen (1994) Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell 6: 1177–1186.PubMedCrossRefGoogle Scholar
  53. Johns, M.A., J. Mottinger and M. Freeling (1985) A low copy number, copia-like transposon in maize. EMBO J. 4: 1093–1101.PubMedGoogle Scholar
  54. Johns, M.A., J.N. Strommer and M. Freeling (1983) Exceptionally high levels of restriction site polymorphism in DNA near the maize adh1 gene. Genetics 105: 733–743.PubMedGoogle Scholar
  55. Kapitonov, V.V. and J. Jurka (2001) Rolling-circle transposons in eukaryotes.Proc. Natl. Acad. Sci. USA 98: 8714–9.PubMedCrossRefGoogle Scholar
  56. Kirik, A., S. Salomon and H. Puchta (2000) Species-specific double-strand break repair and genome evolution in plants. EMBO J. 19: 5562–5566PubMedCrossRefGoogle Scholar
  57. Kolkman, J.M., L.J. Conrad, P.R. Farmer, K. Hardeman, K.R. Ahern, P.E. Lewis, R.J.H. Sawers, S. Lebejko, P. Chomet and T.P. Brutnell (2005) Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis.Genetics 169: 981–995.PubMedCrossRefGoogle Scholar
  58. Kriz, A.L., R.S. Boston and B.A. Larkins (1987) Structural and transcriptional analysis of DNA sequences flanking genes that encode 19 kilodalton zeins. Mol. Gen. Genet. 207: 90–98.PubMedCrossRefGoogle Scholar
  59. Lai, J., J. Ma, Z. Swigonova, W. Ramakrishna, E. Linton, V. Llaca, B. Tanyolac, Y.-J. Park, O.-Y. Jeong, J.L. Bennetzen, and J. Messing (2004) Gene loss and movement in the maize genome. Genome Res. 14: 1924–1931.PubMedCrossRefGoogle Scholar
  60. Lal, S.K., M.J. Giroux, V. Brendel, C.E. Vallejos and L.C. Hannah (2003) The maize genome contains a Helitron insertion. Plant Cell 15: 381–91.PubMedCrossRefGoogle Scholar
  61. Levis, R.W., R. Ganesan, K. Houtchens, L.A. Tolar and F.M. Sheen (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75: 1083–1093.PubMedCrossRefGoogle Scholar
  62. Liu, C.-N., and I. Rubenstein (1992) Genomic organization of an alpha-zein gene cluster in maize. Mol. Gen. Genet. 321: 304–312.Google Scholar
  63. Liu, R., C. Vitte, J. Ma, A.A. Mahama, T. Dhliwayo, M. Lee and J.L. Bennetzen (2007) A GeneTrek analysis of the maize genome. Proc. Natl. Acad. Sci. USA 104: 11844–11849.PubMedCrossRefGoogle Scholar
  64. Liu, R. and J.L. Bennetzen (2008) ENCHILADA REDUX: How complete is your genome sequence? New Phytol. 179: 249–250.PubMedCrossRefGoogle Scholar
  65. Long, M., E. Betran, K. Thornton and W. Wang (2003) The origin of new genes: Glimpses from the young and old. Nat. Rev. Genet. 4: 865–875.PubMedCrossRefGoogle Scholar
  66. Ma, J., J. Lai, J. Messing and J.L. Bennetzen (2005) DNA rearrangement in orthologous orp regions of the maize, rice and sorghum genomes. Genetics 170: 1209–1220.PubMedCrossRefGoogle Scholar
  67. Ma, J., and J.L. Bennetzen (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl. Acad. Sci. USA 101: 12404–12410.PubMedCrossRefGoogle Scholar
  68. Ma, J. and J.L. Bennetzen (2006) Recombination, rearrangement, reshuffling and divergence in a centromeric region of rice. Proc. Natl. Acad. Sci. USA 103: 383–388.PubMedCrossRefGoogle Scholar
  69. Ma, J., K.M. Devos and J.L. Bennetzen (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res. 14: 860–869.PubMedCrossRefGoogle Scholar
  70. Mallet, F., O. Bouton, S. Prudhomme, V. Cheynet, G. Oriol, B. Bonnaud, G. Lucotte, L. Duret and B. Mandrand (2004) The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc. Natl. Acad. Sci. USA 101: 1731–1736.PubMedCrossRefGoogle Scholar
  71. Mariño-Ramírez, L., K.C. Lewis, D. Landsman and I.K. Jordan (2005) Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet. Genome Res. 110: 333–341.PubMedCrossRefGoogle Scholar
  72. McClintock, B. (1929) Chromosome morphology in Zea mays. Science 69: 629.Google Scholar
  73. McClintock, B. (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282.PubMedGoogle Scholar
  74. McClintock, B. (1948) Mutable loci in maize. Carnegie Inst. Wash. Yearbook 47: 155–169.Google Scholar
  75. McClintock, B. (1960) Chromosome constitutions of Mexican and Guatelmalan races of maize. Carnegie Inst. Wash. Yearbook 59: 461–472.Google Scholar
  76. McClintock, B. (1984) The significance of responses of the genome to challenge. Science 226: 792–801.PubMedCrossRefGoogle Scholar
  77. Messing J., A.K. Bharti, W.M. Karlowski, H. Gundlach, H.R. Kim, Y. Yu, F. Wei, G. Fuks, C.A. Soderlund, K.F.X. Mayer and R.A. Wing (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101: 14349–14354.PubMedCrossRefGoogle Scholar
  78. Meyers, B.C., S.V. Tingey and M. Morgante (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res. 11: 1660–1676.PubMedCrossRefGoogle Scholar
  79. Moreau, P., R. Hen, B. Wasylyk, R. Everett, M.P. Gaub and P. Chambon (1981) The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucl. Acids Res. 9: 6047–6068.PubMedCrossRefGoogle Scholar
  80. Morgante, M., S. Brunner, G. Pea, K. Fengler, A. Zuccolo and A. Rafalski (2005) Gene duplication and exon shuffling by Helitron-like transposons generate intraspecies diversity in maize. Nat. Genet. 37: 997–1002.PubMedCrossRefGoogle Scholar
  81. Nagy, E.D. and J.L. Bennetzen (2008) Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster. Genome Res., in press.Google Scholar
  82. Ohno, S. (1970) Evolution by Gene Duplication. Springer, Berlin.Google Scholar
  83. Peacock, W.J., E.S. Dennis, M.M. Rhoades and A.J. Pryor (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc. Natl. Acad. Sci. USA 78: 4490–4494.PubMedCrossRefGoogle Scholar
  84. Phillips, R.L. (1978) Molecular cytogenetics of the nucleolus organizer region. In: Walden, D.B. (Ed.) Maize Breeding and Genetics, chapter 43. John Wiley and Sons, New York.Google Scholar
  85. Piegu, B., R. Guyot, N. Picault, A. Roulin, A. Saniyal, H. Kim, K. Collura, D.S. Brar, S. Jackson, R.A. Wing and O. Panaud. (2006) Doubling genome size without polyploidization: Dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16: 1262–1269.PubMedCrossRefGoogle Scholar
  86. Priyapongsa, J. and I.K. Jordan (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14: 814–821.CrossRefGoogle Scholar
  87. Ramakrishna, W., J. Dubcovsky, Y.-J. Park, C. Busso, J. Emberton, P. SanMiguel and J.L. Bennetzen (2002) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162: 1389–1400.PubMedGoogle Scholar
  88. Rayburn, A.L., D.P. Biradar, D.G. Bullock and L.M. McMurphy (1993) Nuclear DNA content in F1 hybrids of maize. Heredity 70: 294–300.CrossRefGoogle Scholar
  89. Rhoades, M.M. (1942) Preferential segregation in maize. Genetics 27: 395–407.PubMedGoogle Scholar
  90. Rhoades, M.M. (1951) Duplicate genes in maize. Amer. Nat. 85: 105–110.CrossRefGoogle Scholar
  91. Roman, H. (1948) Directed fertilization in maize. Proc. Natl. Acad. Sci. USA 34: 36–42.CrossRefGoogle Scholar
  92. Rostoks, N., Y.-J. Park, W. Ramakrishna, J. Ma, A. Druka, B.A. Shiloff, P.J. SanMiguel, Z. Jiang, R. Brueggeman, D. Sandhu, K. Gill, J.L. Bennetzen and A. Kleinhofs (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Functional and Integrative Genomics 2: 70–80.CrossRefGoogle Scholar
  93. SanMiguel, P., A. Tikhonov, Y.-K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova and J.L. Bennetzen (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.PubMedCrossRefGoogle Scholar
  94. SanMiguel, P., B.S. Gaut, A. Tikhonov, Y. Nakajima and J.L. Bennetzen (1998) The paleontology of intergene retrotransposons of maize. Nat. Genet. 20: 43–45.PubMedCrossRefGoogle Scholar
  95. SanMiguel, P., and J.L. Bennetzen (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals Bot. 82: 37–44.CrossRefGoogle Scholar
  96. SanMiguel, P.J., W. Ramakrishna, J.L. Bennetzen, C.S. Busso and J. Dubcovsky (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5Am. Functional and Integrative Genomics 2: 51–59.PubMedCrossRefGoogle Scholar
  97. SGPWP [Sorghum Genomics Planning Workshop Participants] (2005) Toward sequencing the sorghum genome. A U.S. National Science Foundation-sponsored workshop report. Plant Physiol. 138: 1898–1902.CrossRefGoogle Scholar
  98. Shirasu, K., A.H. Schulman, T. Lahaye and P. Schulze-Lefert (2000) A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10: 908–915.PubMedCrossRefGoogle Scholar
  99. Song, R., and J. Messing (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc. Natl. Acad. Sci. USA 100: 9055–9060.PubMedCrossRefGoogle Scholar
  100. Song, R., V. Llaca and J. Messing (2002) Mosaic organization of orthologous sequences in grass genomes. Genome Res. 12: 1549–1555.PubMedCrossRefGoogle Scholar
  101. Stam, M., C. Belele, W. Ramakrishna, J. Dorweiler, J.L. Bennetzen and V.L. Chandler (2002) The regulatory regions required for B' paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162: 917–930.PubMedGoogle Scholar
  102. Swigonova, Z., J. Lai, J. Ma, W. Ramakrishna, V. Llaca, J.L. Bennetzen and J. Messing (2004) Close split of sorghum and maize genome progenitors. Genome Res. 14: 1916–1923.PubMedCrossRefGoogle Scholar
  103. Talbert, L.E. and V.L. Chandler (1988) Characterization of a highly conserved sequence related to mutator transposable elements in maize. Mol. Biol. Evol. 5: 519–529.PubMedGoogle Scholar
  104. Tikhonov, A. P., J.L. Bennetzen and Z. Avramova (2000) Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum. Plant Cell 12: 249–264.PubMedCrossRefGoogle Scholar
  105. Tikhonov, A.P., P.J. SanMiguel, Y. Nakajima, N.D. Gorenstein, J.L. Bennetzen and Z. Avramova (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci. USA 96: 7409–7414.PubMedCrossRefGoogle Scholar
  106. Vitte, C. and J.L. Bennetzen (2006) Analysis of retrotransposon diversity uncovers properties and propensities in angiosperm genome evolution. Proc. Natl. Acad. Sci. USA 103: 17638–17643.PubMedCrossRefGoogle Scholar
  107. Volff, J.-N. (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28: 913–922.PubMedCrossRefGoogle Scholar
  108. Wang, Q. and H.K. Dooner (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc. Natl. Acad. Sci. USA 103:17644–17649.PubMedCrossRefGoogle Scholar
  109. Wang, W., H. Zheng, C. Fan, J. Li, J. Shi, Z. Cai, G. Zhang, D. Liu, J. Zhang, S. Vang, Z. Lu, G.K. Wong, M. Long and J. Wang (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18: 1791–1802.PubMedCrossRefGoogle Scholar
  110. Wei, F., E. Coe, W. Nelson, A.K. Bharti, F. Engler, E. Butler, H. Kim, J.L. Goicoechea, M. Chen, S. Lee, G. Fuks, H. Sanchez-Villeda, S. Schroeder, Z. Fang, M. McMullen, G. Davis, J.E. Bowers, A.H. Paterson, M. Schaeffer, J. Gardiner, K. Cone, J. Messing, C. Soderlund and R.A. Wing (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet.. 3: e123.PubMedCrossRefGoogle Scholar
  111. Wendel, J.F., R.C. Cronn, I. Alverez, B. Liu, R.L. Small and D.S. Senchina (2002) Intron size and genome size in plants. Mol. Biol. Evol. 19: 2346–2352.PubMedGoogle Scholar
  112. Wicker, T., B. Keller (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res. 17: 1072–1081.PubMedCrossRefGoogle Scholar
  113. White, S.E., L. F. Habera and S.R. Wessler (1994) Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of the gene structure and expression. Proc. Natl. Acad. Sci. USA 91: 11792–11796.PubMedCrossRefGoogle Scholar
  114. Wilson, W.A., S.E. Harrington, W.L. Woodman, M. Lee, M.E. Sorrells and S.R. McCouch (1999) Inferences on the genomes structure of progenitor maize through comparative analysis of rice, maize and domesticated panicoids. Genetics 153: 453–473.PubMedGoogle Scholar
  115. Zhang, Q., J. Arbuckle and S.R. Wessler (2000) Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc. Natl. Acad. Sci. USA 97: 1160–1165.PubMedCrossRefGoogle Scholar
  116. Zonneveld, B.J.M., I.J. Leitch and M.D. Bennett (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann. Bot. 96: 229–244.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Jeffrey L. Bennetzen
    • 1
  1. 1.Department of GeneticsUniversity of GeorgiaAthensUSA

Personalised recommendations