Maize and the Biotech Industry

  • G. Richard Johnson
  • Zoe P. McCuddin

The story of maize and the biotech industry is predominantly a tale of technological innovations and scientific discoveries that have led to products which have added significant value to the crop and boosted farm income. The primary impact of biotechnology on maize has been through transformation. The initial development of plant transformation was enabled by the suitability of the Ti plasmid of Agrobacterium tumefaciens to serve as a natural transformation vector that could be engineered to introduce novel genes into dicots. Since maize is not naturally infected by Agrobacterium tumefaciens, transformation of maize was not accomplished until the invention of biolistic transformation, though with the later invention of super-binary vectors, efficient Agro-mediated transformation of maize was achieved. Advances in tissue culture and plant regeneration also played a significant role in enabling development of the maize biotech industry. Molecular markers have been enlisted to accelerate progress in conventional corn breeding. Herbicide tolerance derived from several sources and insect resistance through modification of gene constructs coding for Bacillus thuringiensis insecticidal proteins comprise the current product base of the industry. RNA interference technology is being harnessed and applied to gene regulation and insect pest control. Development of functional artificial chromosomes promises to extend the power of biotechnology in the modification of plants. Many patent applications have been filed and granted for a wide array of additional technological innovations and products, many of which are likely to be soon commercialized.


Patent Application Embryogenic Callus Crown Gall Restriction Fragment Length Polymorphism Microprojectile Bombardment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, C.L. (1999) The first decade of maize transformation: A review and future perspective. Maydica 44, 101–109.Google Scholar
  2. Armstrong, C.L. and Green, C.E. (1985) Establishment and maintenance of friable, embryogenic callus and the involvement of L-proline. Planta 164, 207–214.CrossRefGoogle Scholar
  3. Armstrong, C.L., Green, C.E. and Phillips, R.L. (1991) Development and availability of germplasm with high type-II culture formation response. Maize Genet. Coop. Newsletter 65, 92–93.Google Scholar
  4. Armstrong, C.L., Romero-Severson, J. and Hodges, T.K. (1992) Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theor. Appl. Genet. 84, 755–762.CrossRefGoogle Scholar
  5. Armstrong, C.L. and Rout, J.R. (2003) Agrobacterium-mediated transformation method. US Patent 6,603,061.Google Scholar
  6. Arnould, S., Bruneau, S., Cabaniols, J.P., Chames, P., Choulika, A., Duchateau, P., Epinat, J.C., Gouble, A., Lacroix, E., Pagues, F., Smith, J. and Perez-Michaut, C. (2006) Custom-made meganuclease and use thereof. US Patent Application 20060206949.Google Scholar
  7. Barton, K.A., Whitley, H.R. and Yang, N-S (1987) Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85, 1103–1109.PubMedCrossRefGoogle Scholar
  8. Baszczynski, C.L., Bowen, B.A., Peterson, D.J. and Tagliani, L.A. (2002) Compositions and methods to stack multiple nucleotide sequences of interest in the genome of a plant. US Patent 6,455,315.Google Scholar
  9. Baszczynski, C.L., Bowen, B.A., Peterson, D.J. and Tagliani, L.A. (2003a) Compositions and methods for locating preferred integration sites within a plant genome. US Patent 6,552,248.Google Scholar
  10. Baszczynski, C.L., Bowen, B.A., Peterson, D.J. and Tagliani, L.A. (2003b) Compositions and methods to reduce the complexity of transgene integration in the genome of a plant. US Patent 6,573,425.Google Scholar
  11. Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikawa, T., Pleau, M., Vaughn, T. and Roberts, J. 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotech 25, 1322–1326.CrossRefGoogle Scholar
  12. Bevan, M.W., Flavell, R.B. and Chilton, M-D (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304, 184–187.CrossRefGoogle Scholar
  13. Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. (1980) Construction of a genetic linkage map in man using restriction length polymorphisms. Am. J. Hum. Genet. 32, 314–331.PubMedGoogle Scholar
  14. Braun, A.C. (1947) Thermal studies on the factors responsible for tumor induction in crown gall. Am. J. Bot. 34, 234–240.CrossRefPubMedGoogle Scholar
  15. Braun, A.C. (1958) A physiological basis for autonomous growth of the crown-gall tumor cell. Proc. Natl. Acad. Sci. USA 44, 344–349.PubMedCrossRefGoogle Scholar
  16. Bregitzer, P., Zhang, S., Cho, M-J and Lemaux, P.G. (2002) Reduced somaclonal variation in barley is associated with culturing highly differentiated meristematic tissues. Crop Sci. 42, 1303–1308.Google Scholar
  17. Bronwyn, R.F., Shou, H., Chikwamba, R.K., Zhang, Z., Xiang, C., Fonger, T.M., Pegg, S.E.K., Li, B., Nettleton, D.S., Pei, D. and Wang, K. (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector. Plant Physiol. 129, 13–22.CrossRefGoogle Scholar
  18. Brookes, G. and Barfoot, P. (2006) GM Crops: The First Ten Years — Global Socio-Economic and Environmental Impacts. ISAAA Brief No. 36. ISAAA, Ithaca, N Y.Google Scholar
  19. Broothaerts, W., Mitchell, H.J., Weir, B., Kaines, S., Smith, L.M.A., Yang, W., Mayer, J.E., Roa-Rodriguez, C. and Jefferson, R.A. (2005) Gene transfer to plants by diverse species of bacteria. Nature 433, 629–633.PubMedCrossRefGoogle Scholar
  20. CaJacob, C.A., Feng, P.C.C., Heck, G.R., Alibhai, M.F., Sammons, R.D. and Padgette, S.R. (2004) Engineering resistance to herbicides. In: P. Christou and H. Klee (Eds.), Handbook of Plant Biotechnology. John Wiley & Sons, New York, pp. 353–372.Google Scholar
  21. Carlson, S.R., Rudgers, G.W., Zieler, H., Mach, J.M., Luo, S., Gruden, E., Krol, C., Copenhaver, G.P, and Preuss, D. 2007. Meiotic transmission of an in vitro-assembled maize minichromosome. PLOS Genet. 3, 1965–1974.PubMedCrossRefGoogle Scholar
  22. Chilton, M-D. (1983) A vector for introducing new genes into plants. Sci. Am. 248 No. 6, 50–59.CrossRefGoogle Scholar
  23. Chilton, M-D, Drummond, MH., Merlo, D.J., Sciaky, D., Montoya, A.L., Gordon, M.P. and Nester, E.W. (1977) Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown gall tumorigenesis. Cell 11, 263–271PubMedCrossRefGoogle Scholar
  24. Chilton, M-D, Saiki, R.K., Yadav, N., Gordon, M.D. and Quetier, F. (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear fraction of crown gall tumor cells. Proc. Natl. Acad. Sci. USA 77, 4060–4064.PubMedCrossRefGoogle Scholar
  25. Chu, C.C., Wang, C.C., Sun, C.S., Hsu, C., Yin, K.C., Chu, C.C. and Bi, F.Y. (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Scientia Sinica 18, 659–668.Google Scholar
  26. Chung, S-M., Vaidya, M., and Tzfira, T. (2006) Agrobacterium is not alone: Gene transfer to plants by viruses and other bacteria. Trends Plant Sci. 11, 1–4.PubMedCrossRefGoogle Scholar
  27. Copenhaver, G.P., Keith, K. and Preuss, D. (2007) Methods for generating or increasing revenues from crops. US Patent 7,193,128.Google Scholar
  28. Dale, E.C. and Ow, D.W. (1991) Gene transfer with the subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA 88, 10558–10562.PubMedCrossRefGoogle Scholar
  29. Danna, K. and Nathans, D. (1971) Specific cleavage of simian virus 40 DNA by restriction endonucleases of Hemophilus influenzae. Proc. Natl. Acad. Sci. USA 68, 2913–2917.PubMedCrossRefGoogle Scholar
  30. D'Halluin, K., Bonne, E., Bossut, M., Beuckeleer, M.D., and Leemans, J. (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4, 1495–1505.PubMedCrossRefGoogle Scholar
  31. D'Halluin, K., Vanderstraeten, C. and Ruiter, R. (2006) Targeted DNA insertion in plants. US Patent Application 20060282914.Google Scholar
  32. Dill, G.M. (2005) Glyphosate resistant crops: History, status, and future. Pest Manag. Sci. 61, 219–224.PubMedCrossRefGoogle Scholar
  33. Dizigan, M.A., Kelly, R.A., Voyles, D.A., Luethy, M.H., Malvar, T.M. and Malloy, K.P. (2007) High lysine maize compositions and event LY038 maize plants. US Patent 7,157,281.Google Scholar
  34. Duchateau, P. and Paques, F. (2006) 1-CreI meganuclease variants with modified specificity, methods of preparation and uses thereof. WO Patent Application 2006097853.Google Scholar
  35. Eathington, S.R., Dudley, J.W. and Rufener II, G.R. (1997) Usefulness of marker-QTL associations in early generation selection. Crop Sci. 37, 1686–1693.Google Scholar
  36. Eathington, S.R., Crosbie, T.M., Edwards, M.D., Reiter, R.S. and Bull, J.K. (2007) Molecular markers in a commercial plant breeding program. Proc. 43rd Ann. Ill. Corn Breed. School. March 5–6, Urbana, Illinois.Google Scholar
  37. Edwards, M. and Johnson, L. (1994) RFLPs for rapid recurrent selection. In: Proc. Joint Plant Breed. Symp. Series. Am. Soc. Hort. And Crop Sci. Soc. Am. Corvallis, Oregon.Google Scholar
  38. Environmental USDA/Aphis. 2006. Assessment of petition 04-229-01p. http://www.aphis.usda. gov/brs/aphisdocs/04_22901p_pea.pdf.
  39. Fillatti, J.J., Kiser, J., Rose, R. and Comai, L. (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/Technology 5, 726–730.CrossRefGoogle Scholar
  40. Fischhoff, D.A., Bowdish, K.S., Perlak, F.J., Marrone, P.G., McCormick, S.M., Niedermeyer, J.G., Dean, D.A., Kusano-Kretzmer, K., Mayer, E.J., Rochester, D.E., Rogers, S.G. and Fraley, R.T. (1987) Insect tolerant tomato plants. Bio/Technology 5, 807–813.CrossRefGoogle Scholar
  41. Fischhoff, D.A., Fuchs, R.L., Lavrik, P.B., McPherson, S.A. and Perlak, F.J. (1998) Insect resistant plants. US Patent 5,763,241.Google Scholar
  42. Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Galluppi, G.R., Goldberg, S.B., Hoffman, N.L. and Woo, S.C. (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80, 4803–4807.PubMedCrossRefGoogle Scholar
  43. Fromm, M.E., Taylor, L.P. and Walbot, V. (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319, 791–793.PubMedCrossRefGoogle Scholar
  44. Fromm, M.E., Morrish, F., Armstrong, C.A., Williams, R., Thomas, J. and Klein, T.M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic plants. Bio/ Technology 8, 833–839.PubMedCrossRefGoogle Scholar
  45. Gianola, D., Perez-Enciso, M. and Toro, M.A. 2003. On marker-assisted prediction of genetic value: beyond the ridge. Genetics 163, 347–365.PubMedGoogle Scholar
  46. Golovkin, M.V., Abraham, M., Morocz, S., Bottka, S., Feher, A. and Dudits, D. (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Science 90, 41–52.CrossRefGoogle Scholar
  47. Gordon-Kamm, W.J., Spencer, T.M., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O'Brien, J.V., Chambers, S.A., Adams, Jr., W.R., Willets, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P. and Lemaux, P.G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2, 603–618.CrossRefGoogle Scholar
  48. Gould, J., Devey, M., Hasagawa, O., Ulian, E.C., Peterson, G. and Smith, R.H. (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95, 426–434.PubMedCrossRefGoogle Scholar
  49. Graham, G. (2007) The evolution of Pioneer's breeding program: Marker enhanced pedigree selection. Proc. 43rd Ann. Ill. Corn Breed. School. March 5–6, Urbana, Illinois.Google Scholar
  50. Graves, A.C.F. and Goldman, S.L. (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol. Biol. 7, 43–50.CrossRefGoogle Scholar
  51. Green, C.E. and Phillips, R.L. (1975) Plant regeneration from tissue cultures of maize. Crop Sci. 15, 417–421.Google Scholar
  52. Helentjaris, T., Slocum, M., Wright, S., Schaefer, A. and Nienhuis, J. 1986. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet. 72, 761–769.CrossRefGoogle Scholar
  53. Herrara-Estrella, L., Depicker, A., Van Montague, M. and Schell, J. (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303, 209–213.CrossRefGoogle Scholar
  54. Hiei, Y. and Komari, T. (1997) Method for transforming monocotyledons. US Patent 5,591,616.Google Scholar
  55. Hillyer, G. (2005) Seed bank. Progressive Farmer Bus, 1–2.Google Scholar
  56. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. (1983) A binary plant vector strategy based on separation of the vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179–180.CrossRefGoogle Scholar
  57. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. (1985) A simple and general method for transferring genes into plants. Science 227, 1229–1231.CrossRefGoogle Scholar
  58. Illinois Agrinews. Sept. 15, 2006. Monsanto-Cargill venture takes root. http// news.release/ILagA3SEPT_15.pdf.
  59. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T. and Kumasharo, T. (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotech. 14, 745–750.CrossRefGoogle Scholar
  60. Johnson, R. (2004) Marker-assisted selection. Plant Breed. Rev. 24 (Part 1), 293–309.Google Scholar
  61. Johnson, G.R. and Mumm, R.H. (1996) Marker assisted maize breeding. Proc. Ann. Corn & Sorghum Ind. Res. Conf. 51, 75–84.Google Scholar
  62. Kaeppler, H.F., Gu, W., Somers, D.A., Rines, H.W. and Cockburn, A.F. (1990) Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep. 9, 415–418.CrossRefGoogle Scholar
  63. Kaeppler, H.F., Somers, D.A., Rines, H.W., and Cockburn, A.F. (1992) Silicon carbide fiber-mediated stable transformation of plant cells. Theor. Appl. Genet. 84, 560–566.CrossRefGoogle Scholar
  64. Kelley, T.J. Jr., and Smith, H.O. (1970) A restriction enzyme from Hemophilus influenzae: II Base sequence of the recognition site. J. Mol. Bio. 51, 393–409.CrossRefGoogle Scholar
  65. Klee, H.J., Muskopf, Y.M. and Gasser, C.S. (1987) Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol. Gen. Genet. 210, 437–442.PubMedCrossRefGoogle Scholar
  66. Klein, T.M., Fromm, M., Weissinger, A., Tomes, D., Schaaf, S., Slatten, M. and Sanford, J.C. (1988) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc. Natl. Acad. Sci. USA 85, 4305–4309.PubMedCrossRefGoogle Scholar
  67. Klein, T.M., Kornstein, L., Sanford, J.C. and Fromm, M.E. (1989) Genetic transformation of maize cells by particle bombardment. Plant Physiol. 91, 440–444.PubMedCrossRefGoogle Scholar
  68. Koziel, M.G., Beland, G.L., Bowman, C., Carozzi, N.B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M.R., Merlin, E., Rhodes, R., Warren, G.W., Wright, M. and Evola, S.V. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuring-iensis. Bio/Technology 11, 194–199.CrossRefGoogle Scholar
  69. Krzyzek, R.A., Laursen, C.R.M. and Anderson, P.C. (1995) Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes. US Patent 5,384,253.Google Scholar
  70. Lande, R. and Thompson, R. (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124, 743–746.PubMedGoogle Scholar
  71. Landi, P., Chiapetta, L., Salvi, S., Frascaroli, E., Lucchese, C. and Tuberosa, R. (2002) Responses and allelic frequency changes associated with recurrent selection for plant regeneration from callus cultures in maize. Maydica 47, 21–32.Google Scholar
  72. Lemaux, P.G. (2007) Personal communication.Google Scholar
  73. Litt, M. and Luty, J.A. (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397–401.PubMedGoogle Scholar
  74. Livak, K.J., Flood, S.J., Marmaro, J., Guisti, W. and Deetz, K. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362.PubMedGoogle Scholar
  75. Lowe, B. and Chomet, P. (2004) Methods and compositions for production of maize lines with increased transformability. US Patent Application 20040016030.Google Scholar
  76. Lowe, B.A., Way, M.M., Kumpf, J.M., Rout, J., Warner, D., Johnson, R., Armstrong, C.L., Spencer, M.T. and Chomet, P.S. (2006) Marker assisted selection for transformability in maize. Mol. Breed. 18, 229–239.CrossRefGoogle Scholar
  77. Lundquist, R.C., and Walters, D.A. (1996) Fertile glyphosate-resistant transgenic corn plants. US Patent 5,554,798.Google Scholar
  78. Luo, S., Hall, A.E., Hall, S.E. and Preuss, D. (2004) Whole-genome fractionation rapidly purifies DNA from centromeric regions. Nat. Meth. 1, 1–5.CrossRefGoogle Scholar
  79. Lurquin, P.F. (2001) The green phoenix: A history of genetically modified plants. Columbia Univ. Press, New York.Google Scholar
  80. Mach, J., Zieler, H., Jin, J., Keith, K., Copenhaver, G. and Preuss, D. (2007a) Plant centromere compositions. US Patent 7,226,782.Google Scholar
  81. Mach, J., Zieler, H., Jin, J., Keith, K., Copenhaver, G. and Preuss, D. (2007b) Plant centromere compositions. US Patent 7,227,057.Google Scholar
  82. Mansoor, S., Amin, I., Hussain, M., Zafar, Y. and Briddon, R.W. (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci. 11, 559–565.PubMedCrossRefGoogle Scholar
  83. Matzke, A.J. and Chilton, M-D. (1981) Site-specific insertion of genes into T-DNA of the Agrobacterium tumor-inducing plasmid: An approach to genetic engineering of higher plant cells. J. Mol. Appl. Genet. 1, 39–49.PubMedGoogle Scholar
  84. McDougall, J. and Phillips, M. (2007) Phillips McDougall AgriService, Edinburgh Scotland. 2007 Edition release 1.0.Google Scholar
  85. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986) Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 51, 263–273.PubMedGoogle Scholar
  86. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.CrossRefGoogle Scholar
  87. Omirulleh, S., Ábrahám, M., Golovkin, M., Stefanov, I., Karabev, M.K., Mustárdy, L., Mórocz, S. and Dudits, D. (1993) Activity of chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol. Biol. 21, 415–428.PubMedCrossRefGoogle Scholar
  88. Ow, D.W. (2007) GM maize from site-specific recombination technology, what next? Curr. Opinion Biotech. 18, 115–120.CrossRefGoogle Scholar
  89. Paszkowski, J., Shillito, R.D., Saul, M., Mandak, V., Hohn, T., Hohn, B. and Potrykus, I. (1984) Direct gene transfer to plants. EMBO J. 3, 2717–2722.PubMedGoogle Scholar
  90. Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S.E. and Tanksley, S.D. (1988) Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction length polymorphisms. Nature 335, 721–726.PubMedCrossRefGoogle Scholar
  91. Perlak, F.J., Deaton, R.W., Armstrong, T.A., Fuchs, R.L., Sims, S.R., Greenplate, J.T.L. and Fischhoff, D.A. (1990) Insect resistant cotton plants. Bio/Technology 8, 939–943.PubMedCrossRefGoogle Scholar
  92. Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S.L. and Fischhoff, D.A. (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88, 3324–3328.PubMedCrossRefGoogle Scholar
  93. Petit, A., Delhaye, S., Tempe, J. and Morel, G. (1970) Recherches sur les guanidines des tissues de crown gall. Mises en evidence d'une relation biochimique specifique entre les souches d'Agrobacterium tumefaciens et les tumeurs qu'elles induisent. Physiol. Veg. 8, 205–213.Google Scholar
  94. Preuss, D., Copenhaver, G. and Keith, K.C. (2005) Plant chromosome compositions and methods. US Patent 6,972,197.Google Scholar
  95. Rosati, C., Landi, P. and Tuberosa, R. (1994) Recurrent selection for regeneration capacity from immature embryo-derived calli in maize. Crop Sci. 34, 343–347.Google Scholar
  96. Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D. and Detmer, J.J. (1988) Genetically transformed maize from protoplasts. Science 240, 204–207.PubMedCrossRefGoogle Scholar
  97. Russell, S.H., Hoopes, J.L. and Odell, J.T. (1992) Directed excision of a transgene from the plant genome. Mol. Gen. Genet. 234, 49–59.PubMedGoogle Scholar
  98. Sadowski, P.D. (1995) The Flp recombinase of the 2-micron plasmid of Saccharomyces cerevisiae. Prog. Nucleic Acids Res. Mol. Biol. 51, 53–91.CrossRefGoogle Scholar
  99. Sadowski, P.D. (2003) The Flp double cross system a simple efficient procedure for cloning DNA fragments. BMC Biotechnol. 3, 9.PubMedCrossRefGoogle Scholar
  100. Sanford., J.C., Wolf, E.D. and Allen, E.D. (1990) Method for transporting substances into living cells and tissues and apparatus thereof. US Patent 4,945, 050.Google Scholar
  101. Segal, G., Song, R. and Messing, J. (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165, 387–397.PubMedGoogle Scholar
  102. Shah, D.M., Horsch, R.B., Klee, H.J., Kishore, G.M., Winter, J.A., Turner, N.E., Hironaka, C.M., Sanders, P.R., Gasser, C.S., Aykent, S., Siegel, N.R., Rogers, S.G. and Fraley, R.T. (1986) Engineering herbicide tolerance in transgenic plants. Science 233, 478–481.PubMedCrossRefGoogle Scholar
  103. Sheridan, W.F. (1982) Black Mexican sweet corn: Its uses for tissue culture. In: W.F. Sheridan (Ed.) Maize for Biological Research. Plant Mol. Biol. Assoc. Charlottesville, Virginia, pp. 385–388.Google Scholar
  104. Small, I. (2007) RNAi for revealing and engineering plant gene functions. Curr. Op. Biotechnol. 18,148–153.CrossRefGoogle Scholar
  105. Smith, H.O. and Wilcox, K.W. (1970) A restriction enzyme from Hemophilus influenzae: I. Purification and general properties. J. Mol. Biol. 51, 379–392.PubMedCrossRefGoogle Scholar
  106. Songstad, D.D., Duncan, D.R. and Widholm, J.M. (1988) Effect of l-aminocyclopropane-l-carboxylic acid, silver nitrate, and norbornadiene on plant regeneration from maize callus Plant Cell Rep. 7, 262–265.CrossRefGoogle Scholar
  107. Songstad, D.D., Armstrong, C.L. and Peterson, W.L. (1991) AgNO3 increases type II callus production of maize inbred B73 and its derivatives. Plant Cell Rep. 9, 699–702.CrossRefGoogle Scholar
  108. Spencer, T.M., Gordon-Kamm, W.J., Daines, R.J., Start, W.G. and Lemaux, P.G. (1990) Bialaphos selection of stable transformants from maize cell culture. Theor. Appl. Genet. 79, 625–631.CrossRefGoogle Scholar
  109. Stuber, C.W. and Moll, R.H. (1972) Frequency changes of isozyme alleles in a selection experiment for grain yield in maize (Zea mays L.) Crop Sci. 12, 337–340.Google Scholar
  110. Stuber, C.W., Moll, R.H., Goodman, M.M., Schaffer, H.E. and Weir, B.S. (1980) Allozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L.). Genetics 95, 225–236.PubMedGoogle Scholar
  111. Stuber, C.W., Goodman, M.M. and Moll, R.H. (1982) Improvement in yield and ear number resulting from selection at allozyme loci in a maize population. Crop Sci. 22, 737–740.CrossRefGoogle Scholar
  112. Stuber, C.W., Edwards, M.D. and Wendell, J.F. (1987) Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci. 27, 639–648.Google Scholar
  113. Tan, S., Evans, R. and Singh, B. (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30, 195–204.PubMedCrossRefGoogle Scholar
  114. Tanksley, S.D. and Rick, C.M. 1980. Isozymic gene linkage map of the tomato.: applications to genetics and breeding. Theor. Appl. Genet. 57, 161–170.CrossRefGoogle Scholar
  115. Vaek, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montague, M. and Leemans, J. (1987). Transgenic plants protected from insect attack. Nature 328, 33–37.CrossRefGoogle Scholar
  116. Vain, P., Flament, P. and Soudain, P. (1989) Role of ethylene in embryogenic callus induction and initiation in Zea mays L. J. Plant Physiol. 135, 537–540.Google Scholar
  117. Walters, D.A., Vetsch, C.S., Potts, D.E. and Lundquist R.C. (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 18, 189–200.PubMedCrossRefGoogle Scholar
  118. Weber, J.L. and May, P.E. (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396.PubMedGoogle Scholar
  119. Willmitzer, L., DeBeuckeleer, M., Lemmers, M., Van Montague, M. and Schell, J. (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287, 359–361.CrossRefGoogle Scholar
  120. Zaenen, I., Van Larebeke, N., Teuchy, H., Van Montagu, M. and Schell, J. (1974) Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J. Mol. Biol. 86, 109–127.PubMedCrossRefGoogle Scholar
  121. Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montague, M. and Schell, J. (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2, 2143–2150.PubMedGoogle Scholar
  122. Zhang, S., Cho, M-J, Koprek, T., Yun, R., Bregitzer, P. and Lemaux, P.G. (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep. 18, 959–966.CrossRefGoogle Scholar
  123. Zhao, Z.Y., Gu, W., Cai, T. and Pierce, D.A. (1999) Methods for Agrobacterium-mediated transformation. US Patent 5,981,840.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Crop SciencesUniversity of IllinoisChicago

Personalised recommendations